Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Toker, O.

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Composite TiO2 films modified by CeO2 and SiO2 for the photocatalytic removal of water pollutants5citations

Places of action

Chart of shared publication
Baudys, Michal
1 / 2 shared
Rusek, Jakub
1 / 3 shared
Paz, Y.
1 / 1 shared
Paušová, Šárka
1 / 7 shared
Krýsa, Josef
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Baudys, Michal
  • Rusek, Jakub
  • Paz, Y.
  • Paušová, Šárka
  • Krýsa, Josef
OrganizationsLocationPeople

article

Composite TiO2 films modified by CeO2 and SiO2 for the photocatalytic removal of water pollutants

  • Baudys, Michal
  • Toker, O.
  • Rusek, Jakub
  • Paz, Y.
  • Paušová, Šárka
  • Krýsa, Josef
Abstract

TiO2 particles of high photocatalytic activity immobilised on various substrates usually suffer from low mechanical stability. This can be overcome by the utilisation of an inorganic binder and/or incorporation in a robust hydrophobic matrix based on rare-earth metal oxides (REOs). Furthermore, intrinsic hydrophobicity of REOs may result in an increased affinity of TiO2-REOs composites to non-polar aqueous pollutants. Therefore, in the present work, three methods were used for the fabrication of composite TiO2/CeO2 films for photocatalytic removal of dye Acid Orange 7 and the herbicide monuron, as representing polar and non-polar pollutants, respectively. In the first method, the composition of a paste containing photoactive TiO2 particles and CeCl3 or Ce(NO3)3 as CeO2 precursors was optimised. This paste was deposited on glass by doctor blading. The second method consisted of the deposition of thin layers of CeO2 by spray coating over a particulate TiO2 photocatalyst layer (prepared by drop casting or electrophoresis). Both approaches lead to composite films of similar photoactivity that of the pure TiO2 layer, nevertheless films made by the first approach revealed better mechanical stability. The third method comprised of modifying a particulate TiO2 film by an overlayer based on colloidal SiO2 and tetraethoxysilane serving as binders, TiO2 particles and cerium oxide precursors at varying concentrations. It was found that such an overlayer significantly improved the mechanical properties of the resulting coating. The use of cerium acetylacetonate as a CeO2 precursor showed only a small increase in photocatalytic activity. On the other hand, deposition of SiO2/TiO2 dispersions containing CeO2 nanoparticles resulted in significant improvement in the rate of photocatalytic removal of the herbicide monuron. Graphical abstract: [Figure not available: see fulltext.]. © 2022, The Author(s), under exclusive licence to European Photochemistry Association, European Society for Photobiology.

Topics
  • nanoparticle
  • Deposition
  • dispersion
  • glass
  • glass
  • composite
  • casting
  • spray coating
  • Cerium
  • inorganic binder