Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Misztela, Andrzej

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Antipathogenic copper coatings: electrodeposition process and microstructure analysis2citations

Places of action

Chart of shared publication
Wierzbicka-Miernik, Anna
1 / 6 shared
Ozga, Piotr
1 / 2 shared
Janusz-Skuza, Marta
1 / 2 shared
Dyner, Marcin
1 / 3 shared
Bugajska, Monika
1 / 2 shared
Dyner, Aneta
1 / 2 shared
Bigos, Agnieszka
1 / 6 shared
Wojewoda-Budka, Joanna
1 / 6 shared
Kwiecien, Izabella
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Wierzbicka-Miernik, Anna
  • Ozga, Piotr
  • Janusz-Skuza, Marta
  • Dyner, Marcin
  • Bugajska, Monika
  • Dyner, Aneta
  • Bigos, Agnieszka
  • Wojewoda-Budka, Joanna
  • Kwiecien, Izabella
OrganizationsLocationPeople

article

Antipathogenic copper coatings: electrodeposition process and microstructure analysis

  • Wierzbicka-Miernik, Anna
  • Ozga, Piotr
  • Misztela, Andrzej
  • Janusz-Skuza, Marta
  • Dyner, Marcin
  • Bugajska, Monika
  • Dyner, Aneta
  • Bigos, Agnieszka
  • Wojewoda-Budka, Joanna
  • Kwiecien, Izabella
Abstract

<jats:title>Abstract</jats:title><jats:p>Copper coatings are an important group of decorative-protective materials characterised by high corrosion resistance, excellent thermal and electrical conductivity, which lately gained more significance due to their antimicrobial activity. The main aim of the presented research was to electrodeposit homogenous copper coatings from the non-cyanide electrolyte solution in galvanostatic conditions on steel (1.4024) and nickel (Ni201) substrates, commercially used for surgical instruments. The effect of substrate finishes used in the production line, by shot peening with glass balls, corundum treatment and brushing on the coatings surface formation, was investigated. The substrates’ and coatings’ microstructural properties were analyzed by scanning and transmission electron microscopy, atomic force microscopy, and X-ray diffraction analysis. The current efficiency of the copper reduction on nickel and steel substrates was found to be above 95%. The copper layers adhere to both substrates, except those deposited on a brushed surface. Regardless of the substrate used, they have a nanocrystalline structure with an average crystallite size of 30 nm. Moreover, the coating surface morphology, which affects the nature of interaction with microorganisms, was effectively modified by the appropriate substrate finishing without changing the electrodeposition conditions.</jats:p>

Topics
  • microstructure
  • surface
  • nickel
  • corrosion
  • x-ray diffraction
  • atomic force microscopy
  • glass
  • glass
  • steel
  • transmission electron microscopy
  • copper
  • electrodeposition
  • electrical conductivity