Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krolczyk, J. B.

  • Google
  • 1
  • 7
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants23citations

Places of action

Chart of shared publication
Demirsöz, Recep
1 / 1 shared
Singla, Anil Kumar
1 / 2 shared
Korkmaz, Mehmet Erdi
1 / 4 shared
Ross, Nimel Sworna
1 / 4 shared
Özdemir, Mehmet Tayyip
1 / 1 shared
Gupta, Munish
1 / 6 shared
Etri, Hamza E. L.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Demirsöz, Recep
  • Singla, Anil Kumar
  • Korkmaz, Mehmet Erdi
  • Ross, Nimel Sworna
  • Özdemir, Mehmet Tayyip
  • Gupta, Munish
  • Etri, Hamza E. L.
OrganizationsLocationPeople

article

Wear performance of Ti-6Al-4 V titanium alloy through nano-doped lubricants

  • Krolczyk, J. B.
  • Demirsöz, Recep
  • Singla, Anil Kumar
  • Korkmaz, Mehmet Erdi
  • Ross, Nimel Sworna
  • Özdemir, Mehmet Tayyip
  • Gupta, Munish
  • Etri, Hamza E. L.
Abstract

<jats:title>Abstract</jats:title><jats:p>Titanium and its alloys are widely utilized in the biomedical sector, they still exhibit poor tribological properties and low wear resistance when employed against even weaker substances. The poor hardness, instability, high coefficient of friction, low load-carrying capacity, and insufficient resistance to not only abrasive but also adhesive wear are further disadvantages of titanium alloys. The focus of this investigation is on the tribological performance of Ti-6Al-4 V alloy in contact with WC carbide abrasive balls when subjected to nanodoped cooling and lubrication conditions. Tribological experiments were executed on Ti-6Al-4 V flat samples using a ball-on-flat tribometer in dry hybrid graphene/boron nitride combination nanoparticles (MQL, nano-3), nanographene with MQL (nano-1), and boron nitride with MQL (nano-2) conditions. After that, the most significant tribological characteristics were investigated, including volume loss, friction coefficient, wear rate, and micrographic structures. The outcomes also demonstrated that the hybrid nanoparticle situation experienced the least amount of volume loss.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • experiment
  • wear resistance
  • nitride
  • carbide
  • hardness
  • Boron
  • titanium
  • titanium alloy
  • coefficient of friction