Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petrzak, Paweł

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Microstructure-related properties of explosively welded multi-layer Ti/Al composites after rolling and annealing7citations

Places of action

Chart of shared publication
Garstka, Tomasz
1 / 2 shared
Stefanik, Andrzej
1 / 1 shared
Mania, Izabela
1 / 2 shared
Mróz, Sebastian
1 / 1 shared
Solecka, Monika
1 / 1 shared
Paul, Henryk
1 / 12 shared
Szota, Piotr
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Garstka, Tomasz
  • Stefanik, Andrzej
  • Mania, Izabela
  • Mróz, Sebastian
  • Solecka, Monika
  • Paul, Henryk
  • Szota, Piotr
OrganizationsLocationPeople

article

Microstructure-related properties of explosively welded multi-layer Ti/Al composites after rolling and annealing

  • Garstka, Tomasz
  • Stefanik, Andrzej
  • Mania, Izabela
  • Mróz, Sebastian
  • Solecka, Monika
  • Petrzak, Paweł
  • Paul, Henryk
  • Szota, Piotr
Abstract

<jats:title>Abstract</jats:title><jats:p>The processes of rolling and annealing of explosively welded multi-layered plates significantly affect the functional properties of the composite. In current research, fifteen-layered composite plates were fabricated using a single-shot explosive welding technique. The composites were then rolled up to 72% to reduce layer thickness, followed by annealing at 625 °C for varying times up to 100 h. Microstructure evolution and chemical composition changes were investigated using scanning electron microscopy equipped with energy-dispersive spectroscopy. The mechanical properties of the composite were evaluated by tensile testing, while the strengths of individual layers near the interface were evaluated by micro-hardness measurements. After explosive welding, the wavy interfaces were always formed between the top layers of the composite and the wave parameters decreasing as the bottom layers approach. Due to the rolling process, the thickness of Ti and Al layers decreases, and the waviness of top interfaces disappeared. Simultaneously, the necking and fracture of some Ti layers were observed. During annealing, the thickness of layers with chemical composition corresponding to the Al<jats:sub>3</jats:sub>Ti phase increased with annealing time. A study of growth kinetic shows that growth is controlled by chemical reaction and diffusion. The results of micro-hardness tests showed that after annealing, a fourfold increase of hardness can be observed in the reaction layers in relation to the Ti, while in relation to Al, the increase of hardness is even 15 times greater.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • scanning electron microscopy
  • strength
  • layered
  • composite
  • hardness
  • chemical composition
  • annealing