Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yamchelou, Morteza Tahmasebi

  • Google
  • 1
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Improvement of Low Plasticity Clay with Crushed Glass: A Mechanical and Microstructural Study23citations

Places of action

Chart of shared publication
Zhu, Jiasheng
1 / 1 shared
Perera, Salpadoru Tholkamudalige Anupiya M.
1 / 1 shared
Saberian, Mohammad
1 / 5 shared
Roychand, Rajeev
1 / 3 shared
Ren, Gang
1 / 1 shared
Li, Jie
1 / 17 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Zhu, Jiasheng
  • Perera, Salpadoru Tholkamudalige Anupiya M.
  • Saberian, Mohammad
  • Roychand, Rajeev
  • Ren, Gang
  • Li, Jie
OrganizationsLocationPeople

article

Improvement of Low Plasticity Clay with Crushed Glass: A Mechanical and Microstructural Study

  • Zhu, Jiasheng
  • Perera, Salpadoru Tholkamudalige Anupiya M.
  • Saberian, Mohammad
  • Yamchelou, Morteza Tahmasebi
  • Roychand, Rajeev
  • Ren, Gang
  • Li, Jie
Abstract

<jats:title>Abstract</jats:title><jats:p>Low plasticity clays are found in abundance worldwide, exerting undue stresses on civil structures, road pavements and railway infrastructure, owing to the periodic settlement caused by their low bearing capacity and slight swelling potential. They are often encountered as natural soil when constructing road subgrade and have the potential to compromise the integrity of the entire pavement system unless improved appropriately. Furthermore, the accumulation of vast quantities of non-biodegradable glass waste is identified as a challenge in many countries. Considering the above, this paper aims to provide a sustainable solution by studying the effect of crushed glass (CG) at varied inclusions of 0, 5, 10, 15 and 20% in a clay subgrade. The testing procedure implemented includes three distinct testing phases, namely, material properties, microstructural properties and mechanical strength tests. The material property tests involved particle size distribution, X-ray fluorescence (XRF) and X-ray diffraction (XRD) testing. Microstructural tests considered include scanning electron microscope (SEM) and micro-CT (CT) testing, which enabled a vital understanding of how the introduction of glass affects the internal structure of the clay matrix, where an increase in the porosity was evident upon adding CG. The mechanical testing phase involved standard compaction, unconfined comprehensive strength (UCS), California bearing ratio (CBR), resilient modulus and swelling–shrinkage tests. It can be concluded that introducing CG improved the clay’s mechanical strength with respect to UCS, CBR and resilient modulus whilst also reducing its swelling potential, where the optimum inclusion of CG at 15% best enhanced the mechanical strength properties of the low plasticity clay. </jats:p>

Topics
  • impedance spectroscopy
  • inclusion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • strength
  • plasticity
  • porosity
  • X-ray fluorescence spectroscopy