Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alshareef, Rayed

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Three-stage pyrolysis–steam reforming–water gas shift processing of household, commercial and industrial waste plastics for hydrogen production3citations

Places of action

Chart of shared publication
Nahil, Mohamad A.
1 / 3 shared
Sait-Stewart, Robert
1 / 1 shared
Williams, Paul
1 / 7 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Nahil, Mohamad A.
  • Sait-Stewart, Robert
  • Williams, Paul
OrganizationsLocationPeople

article

Three-stage pyrolysis–steam reforming–water gas shift processing of household, commercial and industrial waste plastics for hydrogen production

  • Nahil, Mohamad A.
  • Sait-Stewart, Robert
  • Williams, Paul
  • Alshareef, Rayed
Abstract

<jats:title>Abstract</jats:title><jats:p>Five common single plastics and nine different household, commercial and industrial waste plastics were processed using a three-stage (i) pyrolysis, (ii) catalytic steam reforming and (iii) water gas shift reaction system to produce hydrogen. Pyrolysis of plastics produces a range of different hydrocarbon species which are subsequently catalytically steam reformed to produce H<jats:sub>2</jats:sub> and CO and then undergo water gas shift reaction to produce further H<jats:sub>2</jats:sub>. The process mimics the commercial process for hydrogen production from natural gas. Processing of the single polyalkene plastics (high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP)) produced similar H<jats:sub>2</jats:sub> yields between 115 mmol and 120 mmol per gram plastic. Even though PS produced an aromatic product slate from the pyrolysis stage, further stages of reforming and water gas shift reaction produced a gas yield and composition similar to that of the polyalkene plastics (115 mmol H<jats:sub>2</jats:sub> per gram plastic). PET gave significantly lower H<jats:sub>2</jats:sub> yield (41 mmol per gram plastic) due to the formation of mainly CO, CO<jats:sub>2</jats:sub> and organic acids from the pyrolysis stage which were not conducive to further reforming and water gas shift reaction. A mixture of the single plastics typical of that found in municipal solid waste produced a H<jats:sub>2</jats:sub> yield of 102 mmol per gram plastic. Knowing the gas yields and composition from the single plastics enabled an estimation of the yields from a simulated waste plastic mixture and a ‘real-world’ waste plastic mixture to be determined. The different household, commercial and industrial waste plastic mixtures produced H<jats:sub>2</jats:sub> yields between 70 mmol and 107 mmol per gram plastic. The H<jats:sub>2</jats:sub> yield and gas composition from the single waste plastics gave an indication of the type of plastics in the mixed waste plastic samples.</jats:p><jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>

Topics
  • density
  • pyrolysis
  • polymer
  • Hydrogen