Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guzel, Fatma D.

  • Google
  • 1
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Impedance testing of porous Si3N4 scaffolds for skeletal implant applications5citations

Places of action

Chart of shared publication
Avcıoğlu, Gamze
1 / 1 shared
Kozacı, Leyla Didem
1 / 1 shared
Topateş, Gulsum
1 / 1 shared
Avci, Huseyin
1 / 4 shared
Akbulut, Serder Onat
1 / 1 shared
İpteç, Betül Özbek
1 / 1 shared
Ghorbanpoor, Hamed
1 / 2 shared
Butterworth, Adrian
1 / 4 shared
Corrigan, Damion
1 / 10 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Avcıoğlu, Gamze
  • Kozacı, Leyla Didem
  • Topateş, Gulsum
  • Avci, Huseyin
  • Akbulut, Serder Onat
  • İpteç, Betül Özbek
  • Ghorbanpoor, Hamed
  • Butterworth, Adrian
  • Corrigan, Damion
OrganizationsLocationPeople

article

Impedance testing of porous Si3N4 scaffolds for skeletal implant applications

  • Guzel, Fatma D.
  • Avcıoğlu, Gamze
  • Kozacı, Leyla Didem
  • Topateş, Gulsum
  • Avci, Huseyin
  • Akbulut, Serder Onat
  • İpteç, Betül Özbek
  • Ghorbanpoor, Hamed
  • Butterworth, Adrian
  • Corrigan, Damion
Abstract

Si3N4 ceramics show excellent characteristics of mechanical and chemical resistance in combination with good biocompatibility, antibacterial property and radiolucency. Therefore, they are intensively studied as structural materials in skeletal implant applications. Despite their attractive properties, there are limited data in the field about in vitro studies of cellular growth on ceramic implant materials. In this study, the growth of bone cells was investigated on porous Silicon Nitride (Si3N4) ceramic implant by using electrochemical impedance spectroscopy (EIS).Partial sintering was performed at 1700 °C with limited amount of sintering additive for the production of porous Si3N4 scaffolds. All samples were then sterilized by using ethylene oxide followed by culturing MG-63 osteosarcoma cells on the substrates for in vitro assays. At 20 and 36 hours, EIS was performed and results demonstrated that magnitude of the impedance as a result of the changes in the culture media increased after incubation with osteosarcoma cells. The changes are attributed to the cellular uptake of charged molecules from the media. Si3N4 samples appear to show large impedance magnitude changes, especially between 100 Hz and 1 Hz. Impedance changes were also correlated with WST-1 measurements (36 hr) and DAPI results.

Topics
  • porous
  • nitride
  • Silicon
  • electrochemical-induced impedance spectroscopy
  • chemical resistance
  • sintering
  • biocompatibility