People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Magalhaes, Fd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Experiment and modelling of the strain-rate-dependent response during in vitro degradation of PLA fibrescitations
- 2018Dynamic mechanical analysis and creep-recovery behavior of agglomerated corkcitations
- 2018Antimicrobial graphene nanoplatelets coatings for silicone catheterscitations
- 2014Evaluation of Bonding Performance of Amino Polymers Using ABEScitations
- 2014Physicomechanical characterization of monodisperse multivesiculated polyester particlescitations
- 2013Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) filmscitations
- 2013Dispersion of graphene nanoplatelets in poly(vinyl acetate) latex and effect on adhesive bond strengthcitations
- 2013Preparation and Characterization of Acrylic Polymer Nanocomposite Films Obtained from Aqueous Dispersionscitations
- 2012Synthesis and Characterization of Allyl Fatty Acid Derivatives as Reactive Coalescing Agents for Latexescitations
- 2011Evaluation of urea-formaldehyde adhesives performance by recently developed mechanical testscitations
- 2010A Study on the Colloidal Nature of Urea-Formaldehyde Resins and Its Relation with Adhesive Performancecitations
- 2006New trends on membrane science
Places of action
Organizations | Location | People |
---|
article
Experiment and modelling of the strain-rate-dependent response during in vitro degradation of PLA fibres
Abstract
Polylactic acid (PLA) fibres present, in their pristine state, a strain-rate-dependent behaviour. Their mechanical properties evolve during in vitro biodegradation. Tensile tests of PLA fibres are performed at five different strain rates 0.0001, 0.001, 0.01, 0.05 and 0.1/s and at seven degradation stages, 0, 20, 40, 60, 90, 120 and 150 days in a phosphate buffer solution at constant temperature at 37 degrees C. The mechanical response is modelled using a modified three-element standard solid model proposed for polymers under finite deformations range. Observations on experimental data lead to the conclusion that the viscous parameters eta(1) and eta(2) are strain rate dependent, and they vary from 10,762/3202 (N/m s) at the lowest strain rate of 0.0001/s, and 12.2/9.1 (N/m s) at the highest strain rate of 0.1/s for eta(1) and eta(2), respectively, thus, depicting the shear-thinning phenomena with the increase in strain rate. Whereas stiffness parameters C-1 and C-2 are degradation dependent, they vary from 21.6/13.7 (N/m) for undegraded PLA fibres and 9.7/5.4 (N/m) for 150 days degraded PLA fibres for C-1 and C-2, respectively. Decay of stiffness parameters during biodegradation follows an exponential law. The model will be useful to design and develop new fibrous structures for ligament augmentation devices. It could contribute to develop better devices with improved mechanical performance helping those patients in need to repair the ligament tissue.