Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Akisin, C. J.

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Microstructure, mechanical and wear resistance properties of low-pressure cold-sprayed Al-7 Mg/Al2O3 and Al-10 Mg/Al2O3 composite coatings6citations

Places of action

Chart of shared publication
Bai, Mingwen
1 / 15 shared
Bennett, C. J.
1 / 5 shared
Venturi, F.
1 / 3 shared
Hussain, T.
1 / 14 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Bai, Mingwen
  • Bennett, C. J.
  • Venturi, F.
  • Hussain, T.
OrganizationsLocationPeople

article

Microstructure, mechanical and wear resistance properties of low-pressure cold-sprayed Al-7 Mg/Al2O3 and Al-10 Mg/Al2O3 composite coatings

  • Akisin, C. J.
  • Bai, Mingwen
  • Bennett, C. J.
  • Venturi, F.
  • Hussain, T.
Abstract

Aluminium alloy-based metal matrix composites have successfully provided effective wear resistance and repair solutions in the automotive and aerospace sectors; however, the design and manufacture of these alloys are still under development. In this study, the microstructure, mechanical properties and wear resistance of low-pressure cold-sprayed Al-7 Mg/Al2O3 and Al-10 Mg/Al2O3 composite coatings were investigated. The specific wear rates of the coatings were measured when testing them against alumina (Al2O3) counterbody, and the results showed that the cold-sprayed Al-10 Mg/Al2O3 composite coating showed less wear due to its superior hardness, lower porosity and shorter mean free path compared to the Al-7 Mg/Al2O3 composite coating. The microstructural analysis of the worn surfaces of the composite coatings revealed abrasive wear as the primary wear mechanism, and more damages were observed on Al-7 Mg/Al2O3 composite coatings. Most notably, Al2O3 particles were pulled out from the coating and were entrapped between the Al2O3 counterbody and the coating contact surfaces, resulting in a three-body abrasion mode.

Topics
  • surface
  • aluminium
  • laser emission spectroscopy
  • wear resistance
  • aluminium alloy
  • composite
  • hardness
  • porosity