People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Usta, Metin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of water-based electrolyte on surface, mechanical and tribological properties of ZrO2 nanotube arrays produced on zirconium
Abstract
<jats:title>Abstract</jats:title><jats:p>In this work, highly ordered ZrO<jats:sub>2</jats:sub> nanotube arrays were fabricated on commercial pure Zr substrates through anodic oxidation in the water-based electrolyte at various voltages (30 V, 40 V and 50 V) for 1 h. The monoclinic- and tetragonal-ZrO<jats:sub>2</jats:sub> phases were obtained on ZrO<jats:sub>2</jats:sub> nanotubes through anodic oxidation. 13 vibration modes have been observed for the samples grown at low voltages (30 V and 40 V), which are assigned to monoclinic symmetry (7Ag + 6Bg), while—with the increasing growth voltage, the dominant phonon peak intensities associated with the monoclinic symmetry 6 times are decreased, and Eg (268 and 645 cm − 1) mode corresponding to tetragonal symmetry is observed. The nanotube array surfaces exhibited hydrophilic and super-hydrophilic behavior compared to the bare Zr surface. The elastic modulus values of ZrO<jats:sub>2</jats:sub> nanotube surfaces (14.41 GPa) were highly similar to those of bone structure (10–30 GPa) compared to bare Zr substrate (120.5 GPa). Moreover, hardness values of ZrO<jats:sub>2</jats:sub> nanotube surfaces were measured between ∼76.1 MPa and ∼ 283.0 MPa. The critical load values required to separate the nanotubes from the metal surface were measured between ∼1.6 N and ∼26.3 N. The wear resistance of the ZrO<jats:sub>2</jats:sub> nanotube arrays was improved compared to that of plain Zr substrate.</jats:p>