People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ibrahim, Mohd Haziman Wan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022The effect of nanosilica incorporation on the mechanical properties of concrete exposed to elevated temperature: a review.citations
- 2021Mechanical Strength of Concrete by Replacement of Sand with Porcelain Waste with Addition of Superplasticizer
- 2021Mechanical properties of coconut shell-based concrete: experimental and optimisation modellingcitations
- 2021CBA Self-compacting Concrete Exposed to Water Curing
- 2020Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concretecitations
- 2020Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cementcitations
- 2020Establishment of Strength Prediction Equation for Concrete Containing Coal Bottom Ash Exposed to Aggressive Environment
- 2020Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins
- 2018Dynamic Mechanical Analysis of Waste Polyethylene Terephthalate Bottlecitations
- 2018A Review on Potential use of Coal Bottom Ash as a Supplementary Cementing Material in Sustainable Concrete Constructioncitations
- 2018Influence of ground coal bottom ash with different grinding time as cement replacement material on the strength of concrete
- 2018Physical and Chemical Properties of Rice Husk Ash Concrete Under Seawatercitations
- 2018Strength Properties of Rice Husk Ash Concrete Under Sodium Sulphate Attackcitations
- 2018Compressive and Flexural Strength of Concrete Containing Palm Oil Biomass Clinker with Hooked-End Steel Fiberscitations
- 2018Evaluate the Current Expressions of Compression Strength and UPV Relationship
- 2015Fresh Properties of Self-Compacting Concrete Integrating Coal Bottom Ash as a Replacement of Fine Aggregatescitations
- 2015Cementitious Materials Usage in Self-Compacting Concrete: A Reviewcitations
- 2015Pullout strength of ring-shaped waste bottle fiber concrete
- 2015The Strength Behavior of Self-Compacting Concrete Incorporating Bottom Ash as Partial Replacement to Fine Aggregatecitations
- 2014A review of microstructure properties of porous concrete pavement incorporating nano silica
Places of action
Organizations | Location | People |
---|
article
Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cement
Abstract
This paper presents the results from the experimental investigation of the use of wheat straw ash (WSA) as a partial replacement of Portland cement in concrete mixtures. The WSA was used to replace PC up to 20% and the corresponding mechanical performance of the concrete mixtures evaluated. The mechanical performance of the concrete mixtures was evaluated in terms of its compressive strength, modulus of elasticity, split tensile strength and flexural strength. The effect of the WSA on the workability of the mixtures was also evaluated by assessing the slump of each mixture. The findings from this research showed that the use of WSA as a 10% replacement of the PC is optimum. Concrete mixtures made with 10% WSA as replacement of PC is 12%, 10% and 11% higher in the compressive strength, split tensile strength and flexural strength, respectively compared to the control. It was also found out that the high surface area and absorption of WSA resulted in a decrease in the slump of the concrete mixtures with increasing WSA content. Nonetheless, it was recommended that future studies on the durability performance of these concrete mixtures to be carried out in order to understand the performance of these mixtures in different environments.