Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schutter, Anthony De

  • Google
  • 1
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Improving the Carbonation of Steel Slags Through Concurrent Wet Milling5citations

Places of action

Chart of shared publication
Van Gerven, Tom
1 / 14 shared
Ceyssens, Luka
1 / 1 shared
Granata, Giuseppe
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Van Gerven, Tom
  • Ceyssens, Luka
  • Granata, Giuseppe
OrganizationsLocationPeople

article

Improving the Carbonation of Steel Slags Through Concurrent Wet Milling

  • Van Gerven, Tom
  • Ceyssens, Luka
  • Granata, Giuseppe
  • Schutter, Anthony De
Abstract

<jats:title>Abstract</jats:title><jats:p>This work studies mineral carbonation of steel slags with the aim to reduce the amount of slag that is landfilled. Besides permanently storing carbon dioxide (CO<jats:sub>2</jats:sub>), carbonating the slags can improve their quality for use in beneficial applications and reduces the leaching of harmful heavy metals. In order to intensify the mineral carbonation process, mechanical activation is used to improve both the carbonation kinetics and yield. The milling is performed in a planetary ball mill which allows for high-intensity grinding, resulting in a fast reduction of the particle size and quick amorphization and disturbance of the crystal structure, allowing high reaction rates to be achieved. The effects of the three main processing parameters of a planetary ball mill—bead-to-powder ratio <jats:inline-formula><jats:alternatives><jats:tex-math>R</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>R</mml:mi></mml:math></jats:alternatives></jats:inline-formula>, bead size <jats:inline-formula><jats:alternatives><jats:tex-math>D</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>D</mml:mi></mml:math></jats:alternatives></jats:inline-formula> and milling speed <jats:inline-formula><jats:alternatives><jats:tex-math>S</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math></jats:alternatives></jats:inline-formula>—are investigated. Under optimal conditions, more than 50% of the maximum CO<jats:sub>2</jats:sub> uptake is achieved in only 6 min, representing a very significant improvement over regular slurry carbonation. Quantitative XRD allows to identify the reactivity of the different crystalline phases present in the slag under different milling conditions. With the help of a mass balance, the formation of an inert outer layer consisting of silica (SiO<jats:sub>2</jats:sub>) is confirmed. This explains both the shell diffusion mechanism controlling the carbonation reaction and the total conversion being limited to 50–60%.</jats:p><jats:p><jats:bold>Graphical Abstract</jats:bold></jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • Carbon
  • x-ray diffraction
  • grinding
  • crystalline phase
  • milling
  • steel
  • leaching
  • activation