Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Greenwood, Alan

  • Google
  • 1
  • 4
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Thiourea Leaching47citations

Places of action

Chart of shared publication
Baniasadi, Mahsa
1 / 1 shared
Ray, Daniel A.
1 / 1 shared
Graves, John
1 / 16 shared
Farnaud, Sebastien
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Baniasadi, Mahsa
  • Ray, Daniel A.
  • Graves, John
  • Farnaud, Sebastien
OrganizationsLocationPeople

article

Thiourea Leaching

  • Greenwood, Alan
  • Baniasadi, Mahsa
  • Ray, Daniel A.
  • Graves, John
  • Farnaud, Sebastien
Abstract

<p>Abstract: Electronic waste is a dominant global issue with over 50 million tons generated annually. Still, as an amalgamation of precious and rare raw materials, electronic waste is a considerable economic resource with the most valuable components located on the printed circuit boards. Gold is widely used in electronics in numerous applications, although principally for contact points and external connectors. The recovery of gold, due to its high value, is one of the main motivations for recycling e-waste. Although pyrometallurgy and hydrometallurgy processing are still the preferred modes of recovery for gold, the use of high-energy consuming pyro-methods, and the use of gold cyanidation that uses harmful lixiviants are increasingly discouraged. Thiourea has received attention as an alternative lixiviant for gold leaching due to its fast reaction kinetics and less harmful nature. This review aims to provide an up-to-date evaluation of thiourea-gold leaching studies from electronic waste, with emphasis on the recent progression from the classic chemical method to a more sustainable hybrid bioleaching-based system, while its challenges are highlighted. The complementary methods applied for gold retrieval from the pregnant solution are also described with a focus on sustainable methods that have the potential to provide a closed-loop system, the key objective for material recovery in a circular economy. Graphical Abstract: [Figure not available: see fulltext.]</p>

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • gold
  • leaching