Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ugras, H. Ibrahim

  • Google
  • 2
  • 6
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Improved Performance of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate at Steel/HCl Interface by Iodide Ions7citations
  • 2016Synergistic corrosion inhibition effect of 1-ethyl-1-methylpyrrolidinium tetrafluoroborate and iodide ions for low carbon steel in HCl solution45citations

Places of action

Chart of shared publication
Slepski, Pawel
1 / 1 shared
Yildiz, Mesut
1 / 3 shared
Umoren, Saviour A.
2 / 40 shared
Gerengi, Husnu
2 / 19 shared
Kurtay, Mine
1 / 2 shared
Atar, Necip
1 / 2 shared
Chart of publication period
2018
2016

Co-Authors (by relevance)

  • Slepski, Pawel
  • Yildiz, Mesut
  • Umoren, Saviour A.
  • Gerengi, Husnu
  • Kurtay, Mine
  • Atar, Necip
OrganizationsLocationPeople

article

Improved Performance of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate at Steel/HCl Interface by Iodide Ions

  • Slepski, Pawel
  • Ugras, H. Ibrahim
  • Yildiz, Mesut
  • Umoren, Saviour A.
  • Gerengi, Husnu
Abstract

<p>The corrosion and corrosion inhibition of St37 steel in 0.1 M HCl solution by 1-ethyl-3-methylimidazolium tetrafluoroborate (EMITFB) and the effect of addition of KI on the inhibitive performance of EMITFB have been examined by electrochemical [electrochemical impedance spectroscopy, potentiodynamic polarization, and dynamic electrochemical impedance spectroscopy (DEIS)] and surface examination [scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS)] techniques. Results show that EMITFB could only afford the protection of St37 steel in HCl medium on an average scale. The highest studied concentration of EMITFB (4 mM) affords optimum inhibition efficiency of 78.86% from DEIS method. Addition of iodide ions to EMITFB has beneficial effect on the inhibition efficiency; 86.10% has been achieved by addition of 1 mM KI to 4 mM EMITFB. Adsorption of EMITFB molecules onto the metal surface is via physical adsorption mechanism and follows El Awady et al. kinetic/thermodynamic adsorption isotherm model. SEM and EDS results confirm the improvement of corrosion inhibiting ability of EMITFB by iodide ions. EMITFB and EMITFB + KI behave as mixed-type corrosion inhibitor in the studied environment.</p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • scanning electron microscopy
  • steel
  • Energy-dispersive X-ray spectroscopy