Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lima, Luiz G. D. B. Da S.

  • Google
  • 1
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Numerical modeling of adhesion and adhesive failure during unidirectional contact between metallic surfaces10citations

Places of action

Chart of shared publication
Machado, Izabel F.
1 / 3 shared
Fukumasu, Newton K.
1 / 3 shared
Prados, Erika F.
1 / 1 shared
Seriacopi, Vanessa
1 / 1 shared
Bortoleto, Eleir M.
1 / 1 shared
Souza, Roberto M.
1 / 4 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Machado, Izabel F.
  • Fukumasu, Newton K.
  • Prados, Erika F.
  • Seriacopi, Vanessa
  • Bortoleto, Eleir M.
  • Souza, Roberto M.
OrganizationsLocationPeople

article

Numerical modeling of adhesion and adhesive failure during unidirectional contact between metallic surfaces

  • Machado, Izabel F.
  • Lima, Luiz G. D. B. Da S.
  • Fukumasu, Newton K.
  • Prados, Erika F.
  • Seriacopi, Vanessa
  • Bortoleto, Eleir M.
  • Souza, Roberto M.
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, we developed a finite element modeling approach to study adhesion during unidirectional contact between a two-dimensional plane-strain square and a flat slab. The surfaces were metallic or ceramic, and we analyzed different pairs of materials and their adhesion intensity using a FORTRAN subroutine (DLOAD) connected to a commercial finite element code Abaqus, which provided the surface attractive forces based on the Lennard-Jones interatomic potential using Hamaker constants. We considered adhesive loads during both the approach and separation of the surfaces. During the separation step, we modeled the material transfer between surfaces due to adhesion with respect to damage initiation and propagation at the flat slab. The parameters considered in the simulations include normal load, chemical affinity, and system size, and we analyzed different conditions by comparing the interaction forces during approach and withdrawal. This work also presents: (i) a description of the evolution of energy dissipation due to adhesion hysteresis, (ii) the formation–growth–breakage process of the adhesive junctions and the material transfer between surfaces, and (iii) an adhesive wear map based on a proposed novel equation that correlates the material parameters and material loss due to adhesion. The results indicate that the chemical affinity between bodies in contact is more related to adhesion than the applied load. In addition, the ratio between the material strength and elastic modulus seems to be an important factor in reducing adhesive wear.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • strength
  • two-dimensional
  • ceramic