Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thelemann, Dennis

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Revealing Subsurface Damage Morphology and Patterns in areal Ultrashort Pulse Laser Machining of Glass1citations

Places of action

Chart of shared publication
Frank, Samson
1 / 3 shared
Seiler, Michael
1 / 6 shared
Reichenbächer, Maria
1 / 3 shared
Arnold, Thomas
1 / 14 shared
Bliedtner, Jens
1 / 12 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Frank, Samson
  • Seiler, Michael
  • Reichenbächer, Maria
  • Arnold, Thomas
  • Bliedtner, Jens
OrganizationsLocationPeople

article

Revealing Subsurface Damage Morphology and Patterns in areal Ultrashort Pulse Laser Machining of Glass

  • Frank, Samson
  • Thelemann, Dennis
  • Seiler, Michael
  • Reichenbächer, Maria
  • Arnold, Thomas
  • Bliedtner, Jens
Abstract

<jats:title>Abstract</jats:title><jats:p>Material removal rates as well as surface and subsurface quality are key aspects for the industrial application of ultrashort pulse (USP) laser machining. However, revealing so-called subsurface damage (SSD) is challenging. The presented study visualizes and quantifies subsurface damage patterns in areal USP laser ablation of fused silica (FS) and glass N-BK7 (BK). For the first time, using high-resolution optical coherence tomography (OCT) as non-destructive and three-dimensional (3D) evaluation method, SSD morphologies of areal laser machining induced damages are analysed. Influences of laser wavelength, beam geometry and processed material are investigated. Discovered differences of damage morphologies and depth in FS and BK point out the relevance of selecting suitable process parameters. Based on the evaluation of volumetric OCT data, the authors were able to quantify damage morphologies using the surface texture ratio as well as power spectral density functions. One important finding for the quantification and comparability of damage depths in USP laser processing is the influence of applicable evaluation thresholds. In comparison to area thresholds of 0.001% being applicable to OCT measurements, more lenient thresholds of e.g. 1% commonly applied in destructive SSD measurement methods in average result in a reduction of measured damage depths by a factor of ~ 2. This potentially leads to an underestimation of damage depths depending on methods on thresholds used. The presented measurement and evaluation methods as well as gained process insights are important assets for the future optimization of low-damage USP laser micromachining of brittle materials. Moreover, the general applicability and relevance of OCT-based morphological damage analysis in laser material processing is shown.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • tomography
  • glass
  • glass
  • texture
  • laser ablation