Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhao, Xiao-Lin

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Flow and hardening behavior in the heat-affected zone of welded ultra-high strength steels2citations

Places of action

Chart of shared publication
Javaheri, Vahid
1 / 10 shared
Björk, Timo
1 / 8 shared
Afkhami, Shahriar
1 / 5 shared
Amraei, Mohsen
1 / 1 shared
Ghafouri, Mehran
1 / 1 shared
Salminen, Antti
1 / 44 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Javaheri, Vahid
  • Björk, Timo
  • Afkhami, Shahriar
  • Amraei, Mohsen
  • Ghafouri, Mehran
  • Salminen, Antti
OrganizationsLocationPeople

article

Flow and hardening behavior in the heat-affected zone of welded ultra-high strength steels

  • Javaheri, Vahid
  • Björk, Timo
  • Afkhami, Shahriar
  • Zhao, Xiao-Lin
  • Amraei, Mohsen
  • Ghafouri, Mehran
  • Salminen, Antti
Abstract

<jats:title>Abstract</jats:title><jats:p>The applications of thermomechanically processed ultra-high strength steels (UHSS) are rapidly increasing, and welding these UHSSs seems inevitable in steel structures. However, welding heat causes unwanted microstructural transformations in the heat-affected zone (HAZ). Due to the localized nature of these changes throughout the HAZ, evaluating the true stress–strain values of these localized HAZ subzones is essential to improve the accuracy of analytical or numerical models. Hence, this study utilized experimental thermal simulations to replicate HAZ subzones of two types of UHSSs, i.e., direct-quenched S960 and quenched-and-tempered S1100, and employed tensile test in conjunction with digital image correlation to plot the true stress–strain and hardening curves of the subzones. Both UHSSs manifested similar trends but with various fluctuations in their hardening capacities throughout their HAZ subzones. Next, hardening parameters from Hollomon, Voce, and Kocks-Mecking approaches were extracted by fitting the experimental results with the semi-empirical equations. For both UHSS types, the Voce approach, on average, was more accurate in modeling the plastic deformation. Also, hardening parameters achieved via the Voce approach’s fittings agreed with the parameters from Kocks-Mecking plots; this consistency pointed to the predictability of the plastic flow and hardening behavior of both UHSS types. According to the microstructural investigations, the hardening behavior of the investigated HAZ subzones depended on two types of microstructure constituents: ferritic and lath-like features. Ferritic features dominantly governed the plastic flow and hardening near the fusion line, while by getting distant from the fusion line, the lath-like features became more dominant.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • simulation
  • strength
  • steel