Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laher, Benjamin

  • Google
  • 2
  • 3
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of grinding on the fatigue strength of mild and high strength steel fillet weld joints7citations
  • 2024Effect of angular distortion and axial misalignment on the fatigue strength of welded and ground mild steel cruciform joints1citations

Places of action

Chart of shared publication
Brunnhofer, Peter
2 / 4 shared
Buzzi, Christian
2 / 6 shared
Leitner, Martin
2 / 66 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Brunnhofer, Peter
  • Buzzi, Christian
  • Leitner, Martin
OrganizationsLocationPeople

article

Effect of angular distortion and axial misalignment on the fatigue strength of welded and ground mild steel cruciform joints

  • Brunnhofer, Peter
  • Laher, Benjamin
  • Buzzi, Christian
  • Leitner, Martin
Abstract

<p>The focus of this work is to investigate the fatigue strength of a cruciform joint one-sided through-welded by a HV seam with a backing layer made of a 10-mm-thick S355 mild steel. The aim is firstly to analyse the effect of the deformation state incorporating angular distortion and axial misalignment on the fatigue strength of the tested specimens and secondly, the analysis of the benefit by grinding as post-treatment method on the resulting fatigue performance. The deformation impact is numerically investigated utilizing geometry measurements of the specimens as well as strain gauge measurements for validation. Thereby, the near notch stress under clamping condition without any load and under an additional static nominal load is analysed. Based on these investigations, the applied stress range for each tested specimen is converted to a “deformation-free” condition by means of the IIW-recommended k<sub>m</sub> factor. The statistical analyses of the data points with and without this modification reveal a significant impact by the deformation state on both the evaluated fatigue strength and the scatter band. Moreover, this affects the evaluated benefit by grinding as post-treatment, whereas an increase of more than 40% in the fatigue strength at 2 million cycles is observed using the modified data points.</p>

Topics
  • impedance spectroscopy
  • grinding
  • strength
  • steel
  • fatigue