Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rezaei, Amirreza

  • Google
  • 1
  • 1
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process15citations

Places of action

Chart of shared publication
Mohammadi, Mohammadreza
1 / 48 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Mohammadi, Mohammadreza
OrganizationsLocationPeople

article

Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process

  • Mohammadi, Mohammadreza
  • Rezaei, Amirreza
Abstract

<p>Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) analyses. XRD analysis revealed that pure hydroxyapatite with no undesirable compound was formed within the nanocomposite. Moreover, hydroxyapatite had low crystallinity with the average crystallite size of 62.5 nm. FE-SEM images showed dispersion of HA nanorods in PCL matrix with suitable interaction were obtained. The average length and diameter of HA nanorods were calculated 167 nm and 53 nm, respectively. It was found that HA/PCL nanocomposite had marcoporous structure and high surface area which are essential parameters for cell attachment and protein absorption. Biological properties of HA/PCL scaffolds, prepared through a solvent casting process, were investigated under in vitro condition. Bioactivity of these scaffolds was studied in a saturated simulated body fluid (5×SBF). It was confirmed that HA/PCL scaffold was uniformly covered with a layer of calcium phosphate crystals with the thickness of few microns and phase composition of hydroxyapatite. Consequently, scaffolds met the requirements of materials for bone tissue engineering and could be used for many clinical applications in orthopedic and maxillofacial surgery.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • mineral
  • dispersion
  • surface
  • compound
  • polymer
  • phase
  • x-ray diffraction
  • solvent casting
  • casting
  • Calcium
  • mechanical property
  • crystallinity
  • biocompatibility
  • atom probe tomography
  • bioactivity
  • field-emission scanning electron microscopy