Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mclean, Jean Paul

  • Google
  • 3
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2012The effect of the G-layer on the viscoelastic properties of tropical hardwoods6citations
  • 2011The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation14citations
  • 2009The viscoelastic properties of some Guianese woodscitations

Places of action

Chart of shared publication
Arnould, Olivier
2 / 25 shared
Beauchene, Jacques
3 / 11 shared
Clair, Bruno
3 / 18 shared
Thibaut, Anne
1 / 3 shared
Zhang, Tian
1 / 6 shared
Thibaut, Bernard
1 / 11 shared
Bardet, Sandrine
1 / 6 shared
Chart of publication period
2012
2011
2009

Co-Authors (by relevance)

  • Arnould, Olivier
  • Beauchene, Jacques
  • Clair, Bruno
  • Thibaut, Anne
  • Zhang, Tian
  • Thibaut, Bernard
  • Bardet, Sandrine
OrganizationsLocationPeople

article

The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation

  • Beauchene, Jacques
  • Thibaut, Anne
  • Zhang, Tian
  • Thibaut, Bernard
  • Mclean, Jean Paul
  • Bardet, Sandrine
  • Clair, Bruno
Abstract

Background. This study examines the radial trend in wood stiffness of tropical rainforest trees. The objective was to determine if the type of growing environment (exposed plantation or dense primary forest) would have an effect on this radial trend. Methods. The axial elastic modulus of wood samples, representing a pith to bark cross-section, of six trees from several French Guianese species (two of Eperua falcata, one of Eperua grandiflora, two of Carapa procera and one of Symphonia gloubulifera) was measured using a dynamic "forced vibration" method. Results. Primary forest trees were observed to have a decrease in wood stiffness from pith to bark, whereas plantation trees, from the same genus or species, displayed a corresponding increase in wood stiffness. Juvenile wood stiffness appears to vary depending on the environment in which the tree had grown. Conclusion. We suggest that the growth strategy of primary forest trees is to produce wood resistant to self-buckling so that the height of the canopy may be obtained with the maximum of efficiency. In contrast, the growth strategy of the trees growing in an exposed plantation is to produce low-stiffness wood, important to provide flexibility in wind. Further experiments to study the behaviour of more species, with more individuals per species, growing across a range of physical environments, are required.

Topics
  • impedance spectroscopy
  • experiment
  • wood