Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahmoud, Saad

  • Google
  • 1
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020On Miniature Hole Quality and Tool Wear When Mechanical Drilling of Mild Steel5citations

Places of action

Chart of shared publication
Hassan, Ali Abdelhafeez
1 / 9 shared
Li, Mao Jun
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hassan, Ali Abdelhafeez
  • Li, Mao Jun
OrganizationsLocationPeople

article

On Miniature Hole Quality and Tool Wear When Mechanical Drilling of Mild Steel

  • Hassan, Ali Abdelhafeez
  • Mahmoud, Saad
  • Li, Mao Jun
Abstract

<p>Miniature/micro-drilling of holes is increasingly utilized in manufacturing. While non-conventional machining methods (laser and spark erosion) were applied successfully for micro-drilling, mechanical drilling still of interest to industry due to its unmatched geometrical accuracy. However, tool wear and burr formation would hinder the economics of mechanical drilling supremacy. Hence, the need for understanding of tool wear, burr formation and cutting forces progression with process variables is a step towards comprehensive modelling of micro-drilling mechanics and subsequent enhanced process economics. The current research details experimental trials involving mechanical drilling of steel 1008/CR4 using twin-fluted twist drills of diameters 0.5, 1 and 1.5 mm. Full factorial design of experiments was utilized, and analysis of variance was accomplished to study the effects of feed rate and tool diameter (each of them at 3 levels) on tool flank wear and drilled hole quality. Entry and exit burr heights were increased by 80–150% when tool diameter and feed rate were two times higher. Progression of tool flank wear and usage of bigger tool diameter conversely reduced hole surface roughness. In addition, tool flank wear was increased when reducing of feed rate and using larger tool diameter. Catastrophic failure of 0.5-mm-diameter tool was noticed (after drilling of 46 holes at high feed rate level and after drilling of 97 holes at low feed levels) due to chip packing/jamming in the insufficient flute area.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • steel