Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Całus, Dariusz

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Electrical properties of clathrate formed on the basis of a p-type semiconductor with 2D guest positions filled with ferroelectric and propolis2citations

Places of action

Chart of shared publication
Chabecki, Piotr
1 / 2 shared
Pidluzhna, Anna
1 / 1 shared
Ivashchyshyn, Fedir
1 / 2 shared
Maksymych, Vitalii
1 / 1 shared
Gała, Marek
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Chabecki, Piotr
  • Pidluzhna, Anna
  • Ivashchyshyn, Fedir
  • Maksymych, Vitalii
  • Gała, Marek
OrganizationsLocationPeople

article

Electrical properties of clathrate formed on the basis of a p-type semiconductor with 2D guest positions filled with ferroelectric and propolis

  • Chabecki, Piotr
  • Pidluzhna, Anna
  • Ivashchyshyn, Fedir
  • Maksymych, Vitalii
  • Gała, Marek
  • Całus, Dariusz
Abstract

<jats:title>Abstract</jats:title><jats:p>The paper presents findings on the characteristics of GaSe fourfold-expanded matrix with propolis and sodium nitrite (NaNO<jats:sub>2</jats:sub>), intercalated in between matrix layers. The nature of changes of impedance frequency behavior, electric loss tangent, and dielectric permittivity under normal conditions, when illumination is applied, and in a constant magnetic field of synthesized intercalate GaSe &lt; NaNO<jats:sub>2</jats:sub> &gt; and bi-intercalate GaSe &lt; NaNO<jats:sub>2</jats:sub> + Propolis &gt; has been identified. The extraordinary effects have been obtained, indicating that clathrate GaSe &lt; NaNO<jats:sub>2</jats:sub> &gt; has immense values of photo- and magneto-capacitive effects while a current–voltage (I–V) characteristic of clathrate GaSe &lt; NaNO<jats:sub>2</jats:sub> + Propolis &gt; exhibits the hysteresis behavior typical of memristor structures. The memory effect related to pseudo-capacitive charge accumulation has been found and shown to be due to oxidation–reduction reactions.</jats:p>

Topics
  • impedance spectroscopy
  • Sodium
  • p-type semiconductor