Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marin, Florin

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Using High Speed High Pressure Torsion for Cu–13Al–4Ni Shape Memory Alloy Processing1citations

Places of action

Chart of shared publication
Gurau, Carmela
1 / 8 shared
Silva, Rui J. C.
1 / 71 shared
Fernandes, Francisco Manuel Braz
1 / 124 shared
Gurau, Gheorghe
1 / 9 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Gurau, Carmela
  • Silva, Rui J. C.
  • Fernandes, Francisco Manuel Braz
  • Gurau, Gheorghe
OrganizationsLocationPeople

article

Using High Speed High Pressure Torsion for Cu–13Al–4Ni Shape Memory Alloy Processing

  • Gurau, Carmela
  • Silva, Rui J. C.
  • Marin, Florin
  • Fernandes, Francisco Manuel Braz
  • Gurau, Gheorghe
Abstract

<p>Recently, severe plastic deformation (SPD) is recognized as a very efficient processing technique for the fabrication of bulk nanostructured (ns)/ultrafine-grained materials. High-speed high-pressure torsion (HSHPT) process, an SPD method, is used as a novel approach to produce ultrafine grains in memory materials. The influence of HSHPT process variables on some Cu-based shape memory alloys (SMAs) is explored and discussed. This paper also envisages providing a comparative study of significant microstructural evolutions and features that are introduced by HSHPT processing. The plastic deformation mechanisms of the copper-based SMAs are investigated from macrostructural and microstructural points of view using optical and scanning electron microscopic techniques. In addition, significant grain size reduction brought about by the process is attested by X-ray diffraction and transmission electron microscopy. The transition temperatures have been determined by differential scanning calorimetry.</p>

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • grain size
  • x-ray diffraction
  • transmission electron microscopy
  • copper
  • differential scanning calorimetry
  • deformation mechanism