Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morrow, Carolyn

  • Google
  • 1
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Interlaboratory comparison of testing hydraulic, elastic, and failure properties in compression: lessons learned1citations

Places of action

Chart of shared publication
Duda, Mandy
1 / 2 shared
Song, Insun
1 / 1 shared
Lockner, David
1 / 1 shared
Saffer, Demian
1 / 2 shared
Cheng, Yan
1 / 2 shared
Renner, Jörg
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Duda, Mandy
  • Song, Insun
  • Lockner, David
  • Saffer, Demian
  • Cheng, Yan
  • Renner, Jörg
OrganizationsLocationPeople

article

Interlaboratory comparison of testing hydraulic, elastic, and failure properties in compression: lessons learned

  • Duda, Mandy
  • Song, Insun
  • Morrow, Carolyn
  • Lockner, David
  • Saffer, Demian
  • Cheng, Yan
  • Renner, Jörg
Abstract

<jats:title>Abstract</jats:title><jats:p>Many geoscientific problems require us to exploit synergies of experimental and numerical approaches, which in turn lead to questions regarding the significance of experimental details for validation of numerical codes. We report results of an interlaboratory comparison regarding experimental determination of mechanical and hydraulic properties of samples from five rock types, three sandstone varieties with porosities ranging from 5% to 20%, a marble, and a granite. The objective of this study was to build confidence in the participating laboratories’ testing approaches and to establish tractable standards for several physical properties of rocks. We addressed the issue of sample-to-sample variability by investigating the variability of basic physical properties of samples of a particular rock type and by performing repeat tests. Compressive strength of the different rock types spans an order of magnitude and shows close agreement between the laboratories. However, differences among stress–strain relations indicate that the external measurement of axial displacement and the determination of system stiffness require special attention, apparently more so than the external load measurement. Furthermore, post-failure behavior seems to exhibit some machine-dependence. The different methods used for the determination of hydraulic permeability, covering six orders of magnitude for the sample suite, yield differences in absolute values and pressure dependence for some rocks but not for others. The origin of the differences in permeability, in no case exceeding an order of magnitude, correlate with the compressive strength and potentially reflect a convolution of end plug–sample interaction, sample-to-sample variability, heterogeneity on sample scale, and/or anisotropy, the last two aspects are notably not accounted for by the applied evaluation procedures. Our study provides an extensive data set apt for “benchmarking” considerations, be it regarding new laboratory equipment or numerical modeling approaches.</jats:p>

Topics
  • strength
  • permeability
  • atom probe tomography