Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lara, René H.

  • Google
  • 1
  • 5
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015An experimental study of iron sulfides weathering under simulated calcareous soil conditions35citations

Places of action

Chart of shared publication
Monroy, Marcos G.
1 / 1 shared
González, Ma Azucena
1 / 1 shared
Cruz, Roel
1 / 1 shared
Mallet, Martine
1 / 5 shared
Dossot, Manuel
1 / 13 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Monroy, Marcos G.
  • González, Ma Azucena
  • Cruz, Roel
  • Mallet, Martine
  • Dossot, Manuel
OrganizationsLocationPeople

article

An experimental study of iron sulfides weathering under simulated calcareous soil conditions

  • Monroy, Marcos G.
  • González, Ma Azucena
  • Cruz, Roel
  • Mallet, Martine
  • Dossot, Manuel
  • Lara, René H.
Abstract

In calcareous sites, hard rock mining activities release pyrite (FeS2), pyrrhotite (Fe1-x S) and other sulfides to soils. The sulfides then undergo weathering processes, generating acid rock drainage and secondary compounds. Despite the potentially important environmental impacts, very few studies have considered the mechanisms of pyrite and pyrrhotite weathering and the transformation of secondary compounds under neutral-alkaline carbonated conditions. In this study, we used an experimental approach combining electrochemical, microscopic and spectroscopic techniques to examine the interfacial processes involved in pyrite and pyrrhotite weathering under simulated calcareous soil conditions. The results showed an initial oxidation step with the formation of variable amounts of surface sulfur compounds (e.g., polysulfides, S (n) (2-) , and elementary sulfur, S-0) and acid generation, leading to significant modification of the oxidative behavior of the minerals. The surface changes that occurred as a result of mineral weathering provoked transient enhancement of pyrite reactivity and progressive passivation in the pyrrhotite system. Iron sulfides weathering was found to involve the formation of an intermediate siderite (FeCO3)-like compound, preceding the predominant formation of K-jarosite (K center dot Fe-3(SO4)(2)(OH)(6)) and/or ferric oxyhydroxide (alpha, gamma-FeOOH) compounds, depending on the surface acid condition reached in the systems. Mechanisms of pyrite and pyrrhotite weathering in calcareous soils are suggested on the basis of surface characterization and chemical analysis of the leachates generated, and the environmental implications are discussed.

Topics
  • mineral
  • surface
  • compound
  • iron