People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khan, Sakib Hossain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2024Potential of Date Palm Fibers (DPFs) as a sustainable reinforcement for bio- composites and its property enhancement for key applications: a reviewcitations
- 2024Valorisation of agricultural residue bio-mass date palm fibre in dry-blended polycaprolactone (PCL) bio-composites for sustainable packaging applicationscitations
Places of action
Organizations | Location | People |
---|
article
Valorisation of agricultural residue bio-mass date palm fibre in dry-blended polycaprolactone (PCL) bio-composites for sustainable packaging applications
Abstract
<b>Purpose: </b>This study experimentally developed and characterised dry-blended Polycaprolactone (PCL)/date palm fibre biodegradable composites for sustainable packaging applications. Date palm fibres are collected from date palm trees as by-products or waste materials. They will be valorised in bio-composite application to promote fibre-based sustainable packaging items over their non-biodegradable synthetic polymer based conventional packaging products. In the dry-blending process, fibre and polymer are mixed with a shear mixer, while, in a melt-blending process, an extruder is used to extrude fibre/polymer blends after applying heating and high shear pressure to melt and mix polymer with fibres. Dry-blending process offers many comparative advantages, such as less equipment, steps, cost, process degradation, energy consumption and hence, lower harmful environmental emissions; while, a proper fibre/polymer mixing is a challenge and it needs to be achieved properly in this process. Therefore, it is important to understand the effects of dry-blending process on manufacturing of PCL/date palm fibre bio-composites for packaging applications, before promoting the dry-blending as a suitable alternative to the melt-blending process.<br/><br/><b>Methods: </b>Short chopped fibres were grinded as powders and dry-blended at a ratio of (0 − 10%) (w/w) with PCL polymer using hand and a shear mixer for 30 min, following a compression moulding process to produce bio-composite samples. Tensile, water contact angle, SEM, TGA, DSC and DMA tests and analysis were conducted. The dry-blended PCL/date palm fibre composites’ properties were compared with reported melt-blended samples’ results found in literature.<br/><br/><b>Results: </b>Dry-blended samples showed an increase in tensile modulus values (up-to 20%) with fibre inclusion and these values were found close to the melt-blended samples in the literature. Tensile strength and strain values were reduced which could be related to the poor fibre/polymer interface. Fibre addition affected the thermal, thermo-mechanical and crystallisation processes in PCL polymer matrix.<br/><br/><b>Conclusion: </b>Dry-blending is capable of producing bio-composites with a very comparable properties to melt-blended counterparts, although a more details study is needed to conduct in future. The results of this study, could be used carefully to design dry-blended PCL/date palm fibre bio-composites for possible packaging applications. The irregular fibre distribution in dry-blended samples could be improved in different ways which should be investigated in future.