Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Falcoz, Q.

  • Google
  • 1
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Ceramics from Municipal Waste Incinerator Bottom Ash and Wasted Clay for Sensible Heat Storage at High Temperature19citations

Places of action

Chart of shared publication
Meffre, Anca
1 / 3 shared
Tessier-Doyen, N.
1 / 4 shared
Goetz, V.
1 / 4 shared
Nzihou, Ange
1 / 41 shared
Ferber, Nicolas Lopez
1 / 1 shared
Minh, Doan Pham
1 / 20 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Meffre, Anca
  • Tessier-Doyen, N.
  • Goetz, V.
  • Nzihou, Ange
  • Ferber, Nicolas Lopez
  • Minh, Doan Pham
OrganizationsLocationPeople

article

Ceramics from Municipal Waste Incinerator Bottom Ash and Wasted Clay for Sensible Heat Storage at High Temperature

  • Meffre, Anca
  • Tessier-Doyen, N.
  • Goetz, V.
  • Nzihou, Ange
  • Ferber, Nicolas Lopez
  • Minh, Doan Pham
  • Falcoz, Q.
Abstract

Although work has been done to understand the sintering behavior and properties of Municipal Waste Incinerator Bottom Ashes to produce sintered (Bethanis et al. in Ceram Int 28:881–886, 2002; Cheeseman et al. in Resour Conserv Recycl 43:147–162, 2005; Bourtsalas et al. in Waste Manag 45:217–225, 2014; Taurino et al. in J Eur. Ceram Soc 37:323–331, 2017) or sinter-crystallized (Schabbach et al. in J Non Cryst Solids 357:10–17, 2011; Barbieri et al. in J Non Cryst Solids 354:521–528, 2008) ceramics, most of the trials reported in the literature focuses on the use of extensively milled bottom ashes powders (particle size around 1–50 µm), using processes that might not be easily transferable to industrial production at reasonable cost, and producing small cylinders with uniaxial compression technique on powders. This paper summarizes the development process of an extruded ceramic material made of gross-milled bottom ashes and waste clay, designed to be easily mass-produced using production capacities available in the building bricks industry, to be used as a high-temperature thermal energy storage material, which represents an alternative to the petrurgic ceramic previously developed for this application (Py et al. in J Sol Energy Eng 133:031008, 2011; Kere et al. in Int Conf Eng Waste Biomass Valoris, Porto, 2012; Py et al. in Stockage de l’ énergie: énergie thermique, stockage thermique haute température). Post-treated incinerator bottom ashes from a commercial incinerator has been collected, characterized and processed to form ceramic materials, using clay as a binder. Ashes were milled, dried, and mixed with various amounts of an illitic clay (produced as washing mud by a quartz quarry) prior to extrusion (cylindrical pellet) and firing at different temperatures, ranging from 1100 to 1120 °C. The sintered samples have been characterized in terms of density, mechanical strength, thermal capacity and thermal conductivity. Their mineral structure has also been studied. This work follows a study on the feasibility about the production of MWIBA based slabs with uniaxial compaction, and can be seen as an improvement regarding the shaping of the green bodies, more compatible with thermocline thermal energy storage process. The resulting sintered ceramics exhibit interesting properties such as relatively high mechanical resistance and low thermal conductivity, along with moderate density. These properties allow envisioning the use as filler material for thermocline thermal storage systems, especially considering the simplicity of the production process, relying on dry gross milling (jaw-mill), and firing at a temperature reachable within the building bricks and tiles industry. Production of adequate pieces to be used as thermal storage media seems however more relevant, the small size limiting the impact of sintering heterogeneities (formation of black bodies due to high content in fluxing agents like sodium and potassium).

Topics
  • density
  • mineral
  • grinding
  • extrusion
  • milling
  • strength
  • Sodium
  • Potassium
  • ceramic
  • thermal conductivity
  • sintering
  • washing