Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abouelatta, Mohamed

  • Google
  • 1
  • 2
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A Comprehensive Review of Tandem Solar Cells Integrated on Silicon Substrate: III/V vs Perovskite23citations

Places of action

Chart of shared publication
Shaker, Ahmed
1 / 2 shared
Zekry, Abdel Halim
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Shaker, Ahmed
  • Zekry, Abdel Halim
OrganizationsLocationPeople

article

A Comprehensive Review of Tandem Solar Cells Integrated on Silicon Substrate: III/V vs Perovskite

  • Shaker, Ahmed
  • Abouelatta, Mohamed
  • Zekry, Abdel Halim
Abstract

<jats:title>Abstract</jats:title><jats:p>High-efficiency solar cells with low manufacturing costs have been recently accomplished utilizing different technologies. III-V-based tandem solar cells have exhibited performance enhancement with a recent efficiency of greater than 39% under AM1.5G and 47% under concentration. Integration of such III-V materials on a relatively cheap Silicon (Si) substrate is a potential pathway to fabricate high-efficient low-cost tandem solar cells. Besides, perovskite solar cells, as third-generation thin film photovoltaics (PV), have been meteorically developed at a reasonable cost. At present, there are still questions for cost reduction of perovskite materials and solar cell modules because of their limited commercialization. In this review, stacking Si solar cells with III-V material to form Si-based III-V tandem solar cells is presented with different integration technological routes. Also, perovskite/Si tandem solar cells have been reviewed alongside their main engineering challenges introduced through the fabrication of perovskite-based tandem solar cells. Finally, a comparison between III-V tandem solar cells, Si-based III-V tandem solar cells, and perovskite-based tandem solar cells is introduced so that the best technology for a specific application could be determined. The review provides a comprehensive study of two different technologies (III/V and Perovskite) to demonstrate the most valuable cost reduction availability for each.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • thin film
  • Silicon