Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Elaswad, A. M. M.

  • Google
  • 3
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017The influence of holmium on the microstructure and hardness of Mg-Nd-Gd-Zn-Zr alloys1citations
  • 2017Effect of yttrium addition on microstructure and hardness of cast EV31A magnesium alloy1citations
  • 2017Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents6citations

Places of action

Chart of shared publication
Asmael, Mohammed
3 / 39 shared
Shahizan, N. R.
2 / 3 shared
Ahmad, R.
3 / 30 shared
Sheggaf, Z. M.
1 / 5 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Asmael, Mohammed
  • Shahizan, N. R.
  • Ahmad, R.
  • Sheggaf, Z. M.
OrganizationsLocationPeople

article

Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents

  • Asmael, Mohammed
  • Sheggaf, Z. M.
  • Elaswad, A. M. M.
  • Ahmad, R.
Abstract

<p>The influence of praseodymium (Pr) content on the solidification characteristics, microstructure, and mechanical properties of ZRE1 magnesium (Mg) cast alloy was investigated. The obtained solidification parameters showed that Pr strongly affected the solidification time, leading to refinement of the microstructure of the alloys. When the freezing time was reduced to approximately 52 s, the grain size decreased by 12%. Mg12Zn (Ce,Pr) was formed as a new phase upon the addition of Pr and was detected via X-ray diffraction analysis. The addition of Pr led to a substantial improvement in mechanical properties, which was attributed to the formation of intermetallic compounds; the ultimate tensile strength and yield strength increased by approximately 10% and 13%, respectively. Pr addition also refined the microstructure, and the hardness was recovered. The results herein demonstrate that the mechanical properties of Mg alloys are strongly influenced by their microstructure characteristics, including the grain size, volume fraction, and distribution of intermetallic phases.</p>

Topics
  • compound
  • grain
  • grain size
  • phase
  • x-ray diffraction
  • Magnesium
  • magnesium alloy
  • Magnesium
  • strength
  • hardness
  • yield strength
  • tensile strength
  • intermetallic
  • solidification
  • Praseodymium