Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Escalera-Rodríguez, M. D.

  • Google
  • 1
  • 8
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Precipitation Hardening and Corrosion Behavior of Friction Stir Welded A6005-TiB 2 Nanocomposite9citations

Places of action

Chart of shared publication
Rey, P.
1 / 21 shared
Cruz, S.
1 / 3 shared
González Caballero, Beatriz
1 / 1 shared
González, Mª Dolores López
1 / 1 shared
Otero, Enrique
1 / 1 shared
Utrilla, M. V.
1 / 1 shared
Abu-Warda, Najib
1 / 2 shared
Verdera, D.
1 / 9 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Rey, P.
  • Cruz, S.
  • González Caballero, Beatriz
  • González, Mª Dolores López
  • Otero, Enrique
  • Utrilla, M. V.
  • Abu-Warda, Najib
  • Verdera, D.
OrganizationsLocationPeople

article

Precipitation Hardening and Corrosion Behavior of Friction Stir Welded A6005-TiB 2 Nanocomposite

  • Rey, P.
  • Cruz, S.
  • González Caballero, Beatriz
  • Escalera-Rodríguez, M. D.
  • González, Mª Dolores López
  • Otero, Enrique
  • Utrilla, M. V.
  • Abu-Warda, Najib
  • Verdera, D.
Abstract

Precipitation hardening and corrosion behavior of a friction stir welding (FSW) based on the aluminum alloy A6005 reinforced with TiB2 nanoparticles have been studied. Mechanical alloying (MA) and hot extrusion techniques have been employed as processing route followed by FSW. Samples characterization has been performed by DSC and TEM, and precipitation strengthening of the bulk samples and the FSW joint has been evaluated by micro-hardness tests after T6 thermal treatment. TEM characterization revealed the presence of Mg–Si hardening phases, mainly of β′ phase, and dispersoids of α-Al(FeMnCr)Si into the aluminum matrix. The results revealed that samples subjected to MA had less susceptibility to T6 thermal treatment and that the presence of nano-TiB2 reinforcement accelerates aging time. In addition, electrochemical tests based on polarization tests have been performed in 3.5% NaCl solution to assess the effect of FSW process on corrosion behavior. The FSW joint had worse corrosion behavior since the passive Al2O3 film was not generated on the weld zone. SEM–EDS analysis revealed that pits nucleated mainly in sites with a higher presence of Fe contaminant which acts cathodically with respect to the aluminum matrix, producing galvanic corrosion.

Topics
  • nanoparticle
  • nanocomposite
  • phase
  • scanning electron microscopy
  • aluminium
  • laser emission spectroscopy
  • hardness
  • transmission electron microscopy
  • precipitation
  • differential scanning calorimetry
  • aging
  • Energy-dispersive X-ray spectroscopy
  • susceptibility
  • aging
  • galvanic corrosion
  • hot extrusion