Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Śleboda, T.

  • Google
  • 1
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing maps19citations

Places of action

Chart of shared publication
Lypchanskyi, Oleksandr
1 / 6 shared
Łukaszek-Sołek, A.
1 / 3 shared
Stanik, Rafal
1 / 10 shared
Wojtaszek, Marek
1 / 6 shared
Muszka, Krzysztof
1 / 9 shared
Gude, Mike
1 / 775 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Lypchanskyi, Oleksandr
  • Łukaszek-Sołek, A.
  • Stanik, Rafal
  • Wojtaszek, Marek
  • Muszka, Krzysztof
  • Gude, Mike
OrganizationsLocationPeople

article

The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing maps

  • Lypchanskyi, Oleksandr
  • Łukaszek-Sołek, A.
  • Śleboda, T.
  • Stanik, Rafal
  • Wojtaszek, Marek
  • Muszka, Krzysztof
  • Gude, Mike
Abstract

<p>The paper presents the analysis of hot deformation behavior of Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) alloy using the theory of dynamic material modeling (DMM) based on hot compression tests performed to a total true strain of 1 at the strain rates from 0.01 to 100 s<sup>−1</sup> and at the temperatures within the range between 800 and 1100 °C. The processing maps according to the Prasad’s criterion were developed. The analysis of the processing maps allowed for the placement of domains describing the areas of potentially favorable combinations of hot deformation parameters. The microstructure observations of the investigated alloy specimens after hot deformation in stability and instability areas were conducted. The optimal processing parameters for numerical modeling of Ti-6246 alloy forging were selected based on processing maps. After complex analysis of the obtained results, microstructural observations and numerical modeling of forging of selected part, the forging tests of Ti-6246 alloy were realized. The obtained product quality assessment was carried out by computed tomography non-destructive testing.</p>

Topics
  • microstructure
  • theory
  • tomography
  • compression test
  • forging