Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tiwary, C. S.

  • Google
  • 3
  • 13
  • 342

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application6citations
  • 2021A Perspective on the Catalysis Using the High Entropy Alloys182citations
  • 2021Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)154citations

Places of action

Chart of shared publication
Jha, S. R.
1 / 1 shared
Biswas, K.
3 / 13 shared
Halder, A.
2 / 3 shared
Madan, C.
1 / 1 shared
Singh, A.
1 / 32 shared
Mitra, R.
1 / 1 shared
Sharma, S.
1 / 31 shared
Yeah, J-W.
1 / 1 shared
Singh, A. K.
1 / 8 shared
Kumar, R.
1 / 56 shared
Sharma, L.
1 / 3 shared
Parui, A.
1 / 1 shared
Das, R.
1 / 6 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Jha, S. R.
  • Biswas, K.
  • Halder, A.
  • Madan, C.
  • Singh, A.
  • Mitra, R.
  • Sharma, S.
  • Yeah, J-W.
  • Singh, A. K.
  • Kumar, R.
  • Sharma, L.
  • Parui, A.
  • Das, R.
OrganizationsLocationPeople

article

Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)

  • Singh, A. K.
  • Biswas, K.
  • Halder, A.
  • Kumar, R.
  • Tiwary, C. S.
  • Sharma, L.
  • Parui, A.
  • Das, R.
Abstract

Oxygen evolution reaction (OER) is the key step involved both in water splitting devices and rechargeable metal-air batteries, and hence, there is an urgent need for a stable and low-cost material for efficient OER. In the present investigation, Co-Fe-Ga-Ni-Zn (CFGNZ) high entropy alloy (HEA) has been utilized as a low-cost electrocatalyst for OER. Herein, after cyclic voltammetry activation, CFGNZ-nanoparticles (NPs) are covered with oxidized surface and form high entropy (oxy) hydroxides (HEOs), exhibiting a low overpotential of 370 mV to achieve a current density of 10 mA/cm2 with a small Tafel slope of 71 mV/dec. CFGNZ alloy has higher electrochemical stability in comparison to state-of-the art RuO2 electrocatalyst as no degradation has beenbserved up to 10 h of chronoamperometry. Transmission electron microscopy (TEM) studies after 10 h of long-termchronoamperometry test showed no change in the crystal structure, which confirmed the high stability of CFGNZ. The density functional theory (DFT) based calculations show that the closeness of d(p)-band centers to the Fermi level (EF) plays a major role in determining active sites.This work highlights the tremendous potential of CFGNZ HEA for OER, which is the primary reaction involved in water splitting.

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • theory
  • Oxygen
  • transmission electron microscopy
  • density functional theory
  • activation
  • current density
  • cyclic voltammetry
  • chronoamperometry