Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gutierrez, Diego Martinez

  • Google
  • 1
  • 11
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Thermal bridging of graphene nanosheets via covalent molecular junctions34citations

Places of action

Chart of shared publication
Bernal, Mar
1 / 2 shared
Pecchia, Alessandro
1 / 7 shared
Cuniberti, Gianaurelio
1 / 456 shared
Mortazavi, Bohayra
1 / 27 shared
Fina, Alberto
1 / 59 shared
Di Pierro, Alessandro
1 / 4 shared
Gutiérrez, Rafael
1 / 16 shared
Saracco, Guido
1 / 20 shared
Sandonas, Leonardo Medrano
1 / 23 shared
Pierro, Alessandro Di
1 / 2 shared
Gutierrez, Rafael
1 / 61 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Bernal, Mar
  • Pecchia, Alessandro
  • Cuniberti, Gianaurelio
  • Mortazavi, Bohayra
  • Fina, Alberto
  • Di Pierro, Alessandro
  • Gutiérrez, Rafael
  • Saracco, Guido
  • Sandonas, Leonardo Medrano
  • Pierro, Alessandro Di
  • Gutierrez, Rafael
OrganizationsLocationPeople

article

Thermal bridging of graphene nanosheets via covalent molecular junctions

  • Bernal, Mar
  • Pecchia, Alessandro
  • Cuniberti, Gianaurelio
  • Mortazavi, Bohayra
  • Fina, Alberto
  • Di Pierro, Alessandro
  • Gutiérrez, Rafael
  • Saracco, Guido
  • Sandonas, Leonardo Medrano
  • Pierro, Alessandro Di
  • Gutierrez, Diego Martinez
  • Gutierrez, Rafael
Abstract

<p>Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts between graphene nanosheets is through molecular junctions, allowing covalently connecting nanosheets, otherwise interacting only via weak Van der Waals forces. Beside the bare existence of covalent connections, the choice of molecular structures to be used as thermal junctions should be guided by their vibrational properties, in terms of phonon transfer through the molecular junction. In this paper, density functional tight-binding combined with Green’s functions formalism was applied for the calculation of thermal conductance and phonon spectra of several different aliphatic and aromatic molecular junctions between graphene nanosheets. Effects of molecular junction length, conformation, and aromaticity were studied in detail and correlated with phonon tunnelling spectra. The theoretical insight provided by this work can guide future experimental studies to select suitable molecular junctions, in order to enhance the thermal transport by suppressing the interfacial thermal resistances. This is attractive for various systems, including graphene nanopapers and graphene polymer nanocomposites, as well as related devices. In a broader view, the possibility to design molecular junctions to control phonon transport currently appears as an efficient way to produce phononic devices and controlling heat management in nanostructures. [Figure not available: see fulltext.].</p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • polymer
  • interfacial
  • thermal conductivity
  • molecular structure