Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Araújo, J. E.

  • Google
  • 1
  • 6
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Novel nanocomposites based on a strawberry-like gold- coated magnetite (Fe@Au) for protein separation in multiple myeloma serum samples32citations

Places of action

Chart of shared publication
Fernández-Lodeiro, Javier
1 / 7 shared
Lodeiro, Carlos
1 / 25 shared
Capelo, Jose Luis
1 / 13 shared
Rodríguez-González, B.
1 / 2 shared
Santos, A. A. Dos
1 / 2 shared
Santos, Hugo M.
1 / 4 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Fernández-Lodeiro, Javier
  • Lodeiro, Carlos
  • Capelo, Jose Luis
  • Rodríguez-González, B.
  • Santos, A. A. Dos
  • Santos, Hugo M.
OrganizationsLocationPeople

article

Novel nanocomposites based on a strawberry-like gold- coated magnetite (Fe@Au) for protein separation in multiple myeloma serum samples

  • Araújo, J. E.
  • Fernández-Lodeiro, Javier
  • Lodeiro, Carlos
  • Capelo, Jose Luis
  • Rodríguez-González, B.
  • Santos, A. A. Dos
  • Santos, Hugo M.
Abstract

A new process to produce magnetite partially coated with strawberry-like gold nanoparticles in aqueous media is reported. The fast response to magnetic fields and optical properties of gold nanoparticle-based colloidal systems are the two main advantages of this new Fe@Au nanomaterial. These advantages allow for the use of this new colloidal nanomaterial for various purposes in proteomics and biomedicine, as proteins can bind to the surface, and the surface can also be functionalized. As proof-of-concept, the new Fe@Au nanoparticles have been assessed in biomarker discovery as a tool for pre-concentration and separation of proteins from complex proteomes. To this end, sera from healthy people were compared with sera from patients diagnosed with multiple myeloma. The application of this new Fe@Au nanomaterial combined with mass spectrometry has allowed for the identification of 53 proteins, and it has also shown that the heat shock protein HSP75 and the plasma protease C1 inhibitor are potential biomarkers for diagnostics and control of multiple myeloma progression. © 2014, Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • gold
  • mass spectrometry
  • spectrometry