Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Newman, Ben

  • Google
  • 2
  • 9
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Bioinspired Hard–Soft Interface Management for Superior Performance in Carbon Fibre Composites4citations
  • 2022Surface modification of carbon fiber as a protective strategy against thermal degradation17citations

Places of action

Chart of shared publication
Randall, James D.
2 / 10 shared
Henderson, Luke
1 / 11 shared
Varley, Russell J.
1 / 12 shared
Dharmasiri, Bhagya
1 / 4 shared
Stojcevski, Filip
1 / 11 shared
Henderson, Luke C.
1 / 15 shared
Eyckens, Daniel J.
1 / 12 shared
Wickramasingha, Y. Athulya
1 / 4 shared
Nepal, Dhriti
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Randall, James D.
  • Henderson, Luke
  • Varley, Russell J.
  • Dharmasiri, Bhagya
  • Stojcevski, Filip
  • Henderson, Luke C.
  • Eyckens, Daniel J.
  • Wickramasingha, Y. Athulya
  • Nepal, Dhriti
OrganizationsLocationPeople

article

Bioinspired Hard–Soft Interface Management for Superior Performance in Carbon Fibre Composites

  • Randall, James D.
  • Newman, Ben
  • Henderson, Luke
  • Varley, Russell J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Nature has evolved to create materials of unmatched performance governed by the interfacial interactions between hard and soft surfaces. Typically, in a carbon fibre composite, one polymer and one type of carbon fibre is used throughout a laminate. In this work, we use a carbon fibre surface modification approach to vary the fibre–matrix interface throughout the laminate to tailor the soft–hard interfaces. We demonstrate this effect using reclaimed carbon fibre materials in a thermoset polymer, then extend this concept to a thermoplastic polymer matrix–polypropylene. The thermoset specimens examined in this work consist of 5 carbon fibre plies, featuring 0, 1, 3 or 5 surface-modified layers located at the centre of the composite. The largest improvements in physical properties for these composites (yield strength, ultimate flexural strength, and tensile modulus) were found when only 1 modified layer of carbon fibre was placed directly within the centre of the composite. Subsequent investigations revealed that for a polypropylene matrix, where the surface chemistry is tailored specifically for polypropylene, improvements are also observed when mixed surface chemistries are used. This work shows that surface modification of reclaimed carbon fibres as non-woven mats can provide significant improvements in mechanical properties performance for structural composites when used in strategically advantageous locations throughout the composite.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • strength
  • flexural strength
  • yield strength
  • thermoset
  • thermoplastic
  • woven
  • structural composite