People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kamel, Madeha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Fabrication of Glass/Jute Hybrid Composite over Wrapped Aluminum Cylinders: An Advanced Material for Automotive Applications
Abstract
<jats:title>Abstract</jats:title><jats:p>As a class of promising cost-effective lightweight structures, metal-composite hybrids have rapidly emerged in automotive industry largely attributable to their outstanding multifunctional and crashworthy characteristics. The aim of this study is to investigate the potentiality of metal-composite cylinders for crash energy absorption applications. In this context, the crashworthiness performance, and the deformation history of jute (J)/glass (G) reinforced epoxy hybrid composite over wrapped aluminum (Al) cylinders were experimentally studied under quasi-static axial loading. Crashworthiness characteristics of the proposed cylinders were evaluated by measuring the average and peak crushing loads (<jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{avg}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>F</mml:mi><mml:mi>avg</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{ip}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>F</mml:mi><mml:mi>ip</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>), specific energy absorption (<jats:inline-formula><jats:alternatives><jats:tex-math>{SEA}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>SEA</mml:mi></mml:math></jats:alternatives></jats:inline-formula>), total absorbed energy (<jats:inline-formula><jats:alternatives><jats:tex-math>{U})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>U</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, and crush force efficiency (<jats:inline-formula><jats:alternatives><jats:tex-math>{CFE}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>CFE</mml:mi></mml:math></jats:alternatives></jats:inline-formula>). The influence of the number of J-layers on the deformation profiles has also been defined. Result revealed that the highest (<jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{ip}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>F</mml:mi><mml:mi>ip</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>), (<jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{avg}})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>avg</mml:mi></mml:msub><mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, and (<jats:inline-formula><jats:alternatives><jats:tex-math>{SEA}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>SEA</mml:mi></mml:math></jats:alternatives></jats:inline-formula>) noted for Al-3G-2 J-3G with values of 85.45 kN, 53.14 kN, and 39.99 J/g, respectively. The maximum (<jats:inline-formula><jats:alternatives><jats:tex-math>{U}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math></jats:alternatives></jats:inline-formula>) was documented for Al-8G with a value of 3535.89 J. The highest <jats:inline-formula><jats:alternatives><jats:tex-math>({CFE})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>CFE</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> was recorded for Al-2G-4 J-2G followed by Al-3G-2 J-3G with a value of 0.65 and 0.62, respectively. Al-3G-2 J-3G cylinders exhibit excellent energy-absorbing capacity and could be applied as energy-absorbing crashworthiness structures in automotive applications.</jats:p>