Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kamel, Madeha

  • Google
  • 1
  • 3
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Fabrication of Glass/Jute Hybrid Composite over Wrapped Aluminum Cylinders: An Advanced Material for Automotive Applications32citations

Places of action

Chart of shared publication
El-Baky, Marwa A. Abd
1 / 5 shared
Allah, Mahmoud M. Awd
1 / 4 shared
Abdel-Aziem, Walaa
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • El-Baky, Marwa A. Abd
  • Allah, Mahmoud M. Awd
  • Abdel-Aziem, Walaa
OrganizationsLocationPeople

article

Fabrication of Glass/Jute Hybrid Composite over Wrapped Aluminum Cylinders: An Advanced Material for Automotive Applications

  • El-Baky, Marwa A. Abd
  • Kamel, Madeha
  • Allah, Mahmoud M. Awd
  • Abdel-Aziem, Walaa
Abstract

<jats:title>Abstract</jats:title><jats:p>As a class of promising cost-effective lightweight structures, metal-composite hybrids have rapidly emerged in automotive industry largely attributable to their outstanding multifunctional and crashworthy characteristics. The aim of this study is to investigate the potentiality of metal-composite cylinders for crash energy absorption applications. In this context, the crashworthiness performance, and the deformation history of jute (J)/glass (G) reinforced epoxy hybrid composite over wrapped aluminum (Al) cylinders were experimentally studied under quasi-static axial loading. Crashworthiness characteristics of the proposed cylinders were evaluated by measuring the average and peak crushing loads (<jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{avg}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>F</mml:mi><mml:mi>avg</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{ip}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>F</mml:mi><mml:mi>ip</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>), specific energy absorption (<jats:inline-formula><jats:alternatives><jats:tex-math>{SEA}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>SEA</mml:mi></mml:math></jats:alternatives></jats:inline-formula>), total absorbed energy (<jats:inline-formula><jats:alternatives><jats:tex-math>{U})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>U</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, and crush force efficiency (<jats:inline-formula><jats:alternatives><jats:tex-math>{CFE}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>CFE</mml:mi></mml:math></jats:alternatives></jats:inline-formula>). The influence of the number of J-layers on the deformation profiles has also been defined. Result revealed that the highest (<jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{ip}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>F</mml:mi><mml:mi>ip</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>), (<jats:inline-formula><jats:alternatives><jats:tex-math>{{F}}_{{avg}})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>avg</mml:mi></mml:msub><mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, and (<jats:inline-formula><jats:alternatives><jats:tex-math>{SEA}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>SEA</mml:mi></mml:math></jats:alternatives></jats:inline-formula>) noted for Al-3G-2 J-3G with values of 85.45 kN, 53.14 kN, and 39.99 J/g, respectively. The maximum (<jats:inline-formula><jats:alternatives><jats:tex-math>{U}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math></jats:alternatives></jats:inline-formula>) was documented for Al-8G with a value of 3535.89 J. The highest <jats:inline-formula><jats:alternatives><jats:tex-math>({CFE})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>CFE</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> was recorded for Al-2G-4 J-2G followed by Al-3G-2 J-3G with a value of 0.65 and 0.62, respectively. Al-3G-2 J-3G cylinders exhibit excellent energy-absorbing capacity and could be applied as energy-absorbing crashworthiness structures in automotive applications.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • glass
  • glass
  • composite