Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahsan, A.

  • Google
  • 1
  • 5
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Adsorptive Treatment of Landfill Leachate using Activated Carbon Modified with Three Different Methods55citations

Places of action

Chart of shared publication
Jose, Bipin
1 / 1 shared
Aziz, M. Manniruzzaman A.
1 / 1 shared
Idrus, S.
1 / 2 shared
Daud, N. N. N.
1 / 1 shared
Erabee, I. K.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Jose, Bipin
  • Aziz, M. Manniruzzaman A.
  • Idrus, S.
  • Daud, N. N. N.
  • Erabee, I. K.
OrganizationsLocationPeople

article

Adsorptive Treatment of Landfill Leachate using Activated Carbon Modified with Three Different Methods

  • Jose, Bipin
  • Aziz, M. Manniruzzaman A.
  • Idrus, S.
  • Daud, N. N. N.
  • Erabee, I. K.
  • Ahsan, A.
Abstract

<p>Activated Carbon (AC) is an adsorbent having high surface area which makes the process of removing heavy metals from wastewater (such as landfill leachate) very effective. This study explored the utilization of three methods of modification of AC produced from coconut shell by treating it with nitric acid (HNO<sub>3</sub>), potassium permanganate (KMnO<sub>4</sub>) and heating at 600°C to improve the adsorption capacity. The AC can remove multi-pollutants in the filtration process which was used to treat landfill leachate. The water quality parameters such as pH, TSS, Ammonia-Nitrogen and a few heavy metals were considered in the present study. Results showed that the removal of these parameters was proportional with the increase of contact time and the bed depth of AC. The isotherm analysis of the adsorption of modified AC showed the best Removal Efficiency (RE) can be achieved when AC treated with KMnO<sub>4</sub> for NH<sub>3</sub>-N, zinc, TSS and sulphide. The morphology of the AC was studied through Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) pattern analysis and Fourier Transform Infrared (FTIR) analysis. It was found that various types of oxygen functional groups were introduced onto the surface of coconut shell derived AC through oxidation using HNO<sub>3</sub>. FTIR was used to characterize the surface oxygen functional groups. The surface functional groups such as N-H and C-H stretching played a significant role in heavy metals adsorption. Hence, it can be concluded that the hybrid technique by using electrolysis process with AC adsorption be an effective way to remove the suspended solids and heavy metals from landfill leachate and thus able to reduce environmental pollution.</p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • scanning electron microscopy
  • Oxygen
  • zinc
  • Nitrogen
  • Potassium
  • Energy-dispersive X-ray spectroscopy