Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bishop, M. T.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Rapid fabrication of Cu2ZnSnS4:CdS graded interfaces via spray coatingcitations

Places of action

Chart of shared publication
Bhattacharya, B.
1 / 2 shared
Dolganov, A.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Bhattacharya, B.
  • Dolganov, A.
OrganizationsLocationPeople

article

Rapid fabrication of Cu2ZnSnS4:CdS graded interfaces via spray coating

  • Bishop, M. T.
  • Bhattacharya, B.
  • Dolganov, A.
Abstract

<p>Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) is a non-toxic and cheap photovoltaic absorber material, however, many challenges still remain for the successful fabrication of these devices. In this study, CZTS was deposited with CdS, a commonly used buffer layer, using different spray coating procedures (i.e., two-step, single-step and graded deposition techniques), to demonstrate a facile and rapid fabrication technique of creating CZTS:CdS photovoltaic devices. Scanning electron microscopy (SEM) was used to determine the morphology of the deposited films, showing that the two-step, single-step and the graded deposition with 2 s of overlap time produced clear and defined layers. However, when the overlap time exceeded 4 s the layer became less defined, thicker and less dense, resulting in failed photovoltaic devices. This was attributed to the additional source of air during the deposition period, resulting in air being trapped by the deposited precursor, which therefore forms more foam-like functional layers. X-ray diffraction (XRD) analysis reflected this change in morphology, with graded samples above 4 s displaying no obvious CZTS peaks, suggesting an ineffective decomposition route. Depositions using a two-step, single-step and the graded deposition technique with 2 s of overlap time were shown to form functional photovoltaic devices, with a 2 s graded overlap performing three times better than the ungraded samples, resulting in an improved power conversion efficiency of 0.41%. It is important to highlight that the device prepared with a 2 s graded interface significantly increased the current peak performance of CZTS photovoltaic devices deposited using xanthate precursors.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • morphology
  • scanning electron microscopy
  • x-ray diffraction
  • laser emission spectroscopy
  • spray coating
  • decomposition
  • power conversion efficiency