Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mantegna, G.

  • Google
  • 1
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Mechanical properties of BCC lattice cells with waved struts8citations

Places of action

Chart of shared publication
Valvano, Stefano
1 / 6 shared
Alaimo, A.
1 / 8 shared
Tumino, D.
1 / 5 shared
Orlando, C.
1 / 8 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Valvano, Stefano
  • Alaimo, A.
  • Tumino, D.
  • Orlando, C.
OrganizationsLocationPeople

article

Mechanical properties of BCC lattice cells with waved struts

  • Valvano, Stefano
  • Alaimo, A.
  • Tumino, D.
  • Mantegna, G.
  • Orlando, C.
Abstract

In this paper, the mechanical properties of a modified Body-Centred Cubic lattice cell with waved struts have been determined using FEM simulations with solid element mesh. The strut waviness introduces orthotropic properties in the cell and the correlation between geometrical cell parameters and resulting mechanical attitudes is calculated. For a complete determination of all the mechanical constants, uniaxial compression and in-plane shear have been simulated along different loading directions. Attention has been particularly paid to the definition of appropriate boundary constraints able to mimic the periodic condition that applies to a repetitive unit cell. At first, the numerical model has been validated with existing analytical and experimental results available in the literature, then parametric strut waviness has been introduced to this model. A systematic numerical study has been conducted on lattice cells with different density and different wave amplitude. Results have evidenced for the waved struts a considerable increase in the longitudinal uniaxial modulus and a negligible effect on the transverse moduli, while a slight reduction of the shear moduli is generally obtained in all the sliding planes. Poisson’s ratios are highly affected both by density and waviness. The obtained results can be useful for the optimized definition of a lattice cell, tailored to the specific mechanical requirements of an advanced component.

Topics
  • density
  • impedance spectroscopy
  • simulation