Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brusciotti, Fabiola

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of the curing agent DETA and its interaction with a rare earth carboxylate as corrosion inhibitor in a hybrid silica-epoxy formulationcitations

Places of action

Chart of shared publication
Forsyth, Maria
1 / 42 shared
Odell, Luke A.
1 / 7 shared
Somers, Anthony
1 / 3 shared
Agustín-Sáenz, Cecilia
1 / 1 shared
Suárez-Vega, Ana
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Forsyth, Maria
  • Odell, Luke A.
  • Somers, Anthony
  • Agustín-Sáenz, Cecilia
  • Suárez-Vega, Ana
OrganizationsLocationPeople

article

Effect of the curing agent DETA and its interaction with a rare earth carboxylate as corrosion inhibitor in a hybrid silica-epoxy formulation

  • Forsyth, Maria
  • Odell, Luke A.
  • Somers, Anthony
  • Agustín-Sáenz, Cecilia
  • Brusciotti, Fabiola
  • Suárez-Vega, Ana
Abstract

<jats:title>Abstract</jats:title><jats:p>Sol–gel based coatings are used to protect metals from corrosion. They offer a barrier to the electrolyte penetration, but they do not provide active corrosion protection. Therefore, corrosion inhibitors are often added to sol–gel formulations to improve the overall corrosion behavior. Sol–gel-based coatings typically require relatively high temperatures to be properly cured, which supposes high energy consumptions and might damage some of the precursors of the formulation, including corrosion inhibitors incorporated to improve the coating’s properties. In this study, the effect of diethylenetriamine (DETA) as a curing agent, and yttrium 4-hydroxy cinnamate [Y-(4OHCin)<jats:sub>3</jats:sub>] as corrosion inhibitor, on the chemistry and corrosion performance of a hybrid silica-epoxy formulation are investigated. Solid nuclear magnetic resonance and attenuated total reflectance Fourier transform infrared spectroscopy are carried out to analyze the influence of the curing agent and the corrosion inhibitor on the chemical structure of the coating. The corrosion performance is assessed by means of electrochemical impedance spectroscopy, and the results are evaluated considering the chemical study and the interaction between the different compounds.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • corrosion
  • Yttrium
  • Fourier transform infrared spectroscopy
  • curing