Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pügner, Marc

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Microstructure and Early-Stage Oxidation Behavior of Co-Cr-Cu-Fe-Mn-Ni High-Entropy Alloys5citations

Places of action

Chart of shared publication
Lampke, Thomas
1 / 388 shared
Lippmann, Stephanie
1 / 11 shared
Undisz, Andreas
1 / 11 shared
Wonneberger, Robert
1 / 4 shared
Apell, Jonathan
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lampke, Thomas
  • Lippmann, Stephanie
  • Undisz, Andreas
  • Wonneberger, Robert
  • Apell, Jonathan
OrganizationsLocationPeople

article

Microstructure and Early-Stage Oxidation Behavior of Co-Cr-Cu-Fe-Mn-Ni High-Entropy Alloys

  • Lampke, Thomas
  • Pügner, Marc
  • Lippmann, Stephanie
  • Undisz, Andreas
  • Wonneberger, Robert
  • Apell, Jonathan
Abstract

<jats:title>Abstract</jats:title><jats:p>The microstructure and early-stage oxidation behavior of the equiatomic CoCrCuFeMnNi high-entropy alloy (HEA) and its six sub-alloys, obtained by omitting one element each, were investigated. Alloys were prepared using induction levitation melting, cold rolled, and oxidized for 1 h at 800°C in air. The Ni-free and Co-free HEAs showed an inhomogeneous microstructure associated with liquid phase separation. The other alloys were either single-phase (Cu-free HEA) or contained two face-centered cubic phases, one Cu-rich and one Cu-poor. The Cu and Mn-containing two-phase alloys showed preferential oxidation of the Cu/Mn-rich phase, leading to Mn-rich oxides that are prone to spallation. The Mn-free alloy exhibited a thicker oxide (~ 5 <jats:italic>µ</jats:italic>m) on the Cu-rich phase, whereas the Cu-poor phase was covered by a thin base oxide (&lt; 1 <jats:italic>µ</jats:italic>m). The single-phase Cu-free (‘Cantor’) alloy formed an approximately 1-<jats:italic>µ</jats:italic>m-thick oxide of the crystal structure types of Mn<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, Mn<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, MnCr<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>, and Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. For prospective high-temperature applications, reducing the Cu and Mn content and thus avoiding formation of a second Cu-rich phase is a promising route to facilitate formation of a protective oxide.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • liquid phase