Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lieten, R. R.

  • Google
  • 1
  • 17
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Embedded binary eutectic alloy nanostructures4citations

Places of action

Chart of shared publication
Stone, P. R.
1 / 9 shared
Boswell-Koller, C. N.
1 / 2 shared
Chrzan, D. C.
1 / 6 shared
Sherburne, M. P.
1 / 2 shared
Dubon, O. D.
1 / 40 shared
Liao, C. Y.
1 / 6 shared
Haller, E. E.
1 / 30 shared
Minor, A. M.
1 / 10 shared
Ager, J. W.
1 / 11 shared
Watanabe, M.
1 / 5 shared
Guzman, J.
1 / 2 shared
Yuan, C. W.
1 / 2 shared
Conry, T.
1 / 2 shared
Beeman, J. W.
1 / 21 shared
Bustillo, K. C.
1 / 3 shared
Shin, S. J.
1 / 2 shared
Sawyer, C. A.
1 / 3 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Stone, P. R.
  • Boswell-Koller, C. N.
  • Chrzan, D. C.
  • Sherburne, M. P.
  • Dubon, O. D.
  • Liao, C. Y.
  • Haller, E. E.
  • Minor, A. M.
  • Ager, J. W.
  • Watanabe, M.
  • Guzman, J.
  • Yuan, C. W.
  • Conry, T.
  • Beeman, J. W.
  • Bustillo, K. C.
  • Shin, S. J.
  • Sawyer, C. A.
OrganizationsLocationPeople

article

Embedded binary eutectic alloy nanostructures

  • Stone, P. R.
  • Boswell-Koller, C. N.
  • Chrzan, D. C.
  • Sherburne, M. P.
  • Dubon, O. D.
  • Liao, C. Y.
  • Haller, E. E.
  • Minor, A. M.
  • Ager, J. W.
  • Watanabe, M.
  • Guzman, J.
  • Lieten, R. R.
  • Yuan, C. W.
  • Conry, T.
  • Beeman, J. W.
  • Bustillo, K. C.
  • Shin, S. J.
  • Sawyer, C. A.
Abstract

The properties of binary eutectic alloy nanostructures embedded within a matrix are discussed. It is demonstrated that GeAu and GeSn nanostructures embedded in SiO <sub>2</sub> form in a bilobed structure as predicted by a simple theory. Upon heating, the nanostructures melt and assume a nominally compositionally homogeneous structure. Slow cooling of the liquid returns the nanostructure to its equilibrium bilobed morphology. Rapid quenching yields a kinetically limited, nearly compositionally homogeneous solid. Rapid thermal annealing can convert this metastable structure again into the bilobed structure. It is, therefore, possible to switch between the bilobed structure and the homogenous structure. The kinetics of the homogeneous composition to bilobe structure transformation depend on composition. Tuning the composition enables one to tune the transformation temperature. Possible technological applications of these nanostructures are discussed. © 2012 TMS.

Topics
  • impedance spectroscopy
  • morphology
  • theory
  • melt
  • annealing
  • quenching