Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rößler, Maximilian

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Towards developing a control of grinding processes using a combination of grinding power evaluation and Barkhausen noise analysis6citations

Places of action

Chart of shared publication
Jedamski, Rahel
1 / 1 shared
Dix, Martin
1 / 11 shared
Kuhlmann, Gerrit
1 / 1 shared
Epp, Jérémy
1 / 10 shared
Karpuschewski, Bernhard
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Jedamski, Rahel
  • Dix, Martin
  • Kuhlmann, Gerrit
  • Epp, Jérémy
  • Karpuschewski, Bernhard
OrganizationsLocationPeople

article

Towards developing a control of grinding processes using a combination of grinding power evaluation and Barkhausen noise analysis

  • Jedamski, Rahel
  • Dix, Martin
  • Kuhlmann, Gerrit
  • Epp, Jérémy
  • Karpuschewski, Bernhard
  • Rößler, Maximilian
Abstract

<jats:title>Abstract</jats:title><jats:p>After grinding of hardened workpieces, especially in case of safety-relevant components, usually non-destructive testing is carried out to detect thermo-mechanical damages in the surface layer. In-process detection methods allow a fast reaction to negative changes before producing a large amount of rejects and open the possibility to save additional time for post-process inspection. However, these are not industrially used yet, since boundary conditions and application limits are not defined so far. This study shows the potential of a grinding process control based on a soft sensor combining a thermal limit in a <jats:inline-formula><jats:alternatives><jats:tex-math>{P}_{c}^{}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>P</mml:mi><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula>− Δt-diagram and magnetic Barkhausen noise analysis applied in-situ during grinding (BN). The specific grinding power <jats:inline-formula><jats:alternatives><jats:tex-math>{P}_{c}^{}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>P</mml:mi><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:math></jats:alternatives></jats:inline-formula> in dependence of the contact time Δt allows to identify/avoid grinding burn starting from light tempering zones. Furthermore, the BN is well suited for the detection of detrimental residual stress changes (tensile) occurring even before tempering zones are generated. The developed process control based on this combination optimizes the process parameters to prevent negative thermo-mechanical surface changes while keeping the productivity of the process as high as possible. The applicability is demonstrated for external cylindrical and non-circular grinding processes. Due to the radius varying over the workpiece circumference, the latter ones require special demands on signal evaluation, resolution and control speed.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grinding
  • tempering