Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kriwall, Mareille

  • Google
  • 1
  • 8
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Investigation of the material combination 20MnCr5 and X45CrSi9-3 in the Tailored Forming of shafts with bearing seats9citations

Places of action

Chart of shared publication
Biester, Kai
1 / 5 shared
Overmeyer, Ludger
1 / 54 shared
Budde, Laura
1 / 10 shared
Lammers, Marius
1 / 11 shared
Behrens, Bernd-Arno
1 / 119 shared
Hermsdorf, Jörg
1 / 51 shared
Merkel, Paulina
1 / 3 shared
Stonis, Malte
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Biester, Kai
  • Overmeyer, Ludger
  • Budde, Laura
  • Lammers, Marius
  • Behrens, Bernd-Arno
  • Hermsdorf, Jörg
  • Merkel, Paulina
  • Stonis, Malte
OrganizationsLocationPeople

article

Investigation of the material combination 20MnCr5 and X45CrSi9-3 in the Tailored Forming of shafts with bearing seats

  • Kriwall, Mareille
  • Biester, Kai
  • Overmeyer, Ludger
  • Budde, Laura
  • Lammers, Marius
  • Behrens, Bernd-Arno
  • Hermsdorf, Jörg
  • Merkel, Paulina
  • Stonis, Malte
Abstract

<jats:title>Abstract</jats:title><jats:p>The Tailored Forming process chain is used to manufacture hybrid components and consists of a joining process or Additive Manufacturing for various materials (e.g. deposition welding), subsequent hot forming, machining and heat treatment. In this way, components can be produced with materials adapted to the load case. For this paper, hybrid shafts are produced by deposition welding of a cladding made of X45CrSi9-3 onto a workpiece made from 20MnCr5. The hybrid shafts are then formed by means of cross-wedge rolling. It is investigated, how the thickness of the cladding and the type of cooling after hot forming (in air or in water) affect the properties of the cladding. The hybrid shafts are formed without layer separation. However, slight core loosening occurres in the area of the bearing seat due to the Mannesmann effect. The microhardness of the cladding is only slightly effected by the cooling strategy, while the microhardness of the base material is significantly higher in water cooled shafts. The microstructure of the cladding after both cooling strategies consists mainly of martensite. In the base material, air cooling results in a mainly ferritic microstructure with grains of ferrite-pearlite. Quenching in water results in a microstructure containing mainly martensite.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • grain
  • forming
  • additive manufacturing
  • joining
  • quenching