People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kierstein, Oliver
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Residual Stress Buildup in Ti Components Produced by Cold Spray Additive Manufacturing (CSAM)
Abstract
Cold spray has been developed recently to be used as an additive manufacturing technology in order to fabricate bulk components. Residual stresses are known to build up in coatings made by cold spray; therefore, cold spray additive manufacturing (CSAM) is also expected to generate residual stress in bulk parts and components, and that residual stress can lead to shape distortions or component cracking. The residual stress analysis has been applied to some generic sample shapes, a thick patch deposit and a vertical wall, produced by CSAM out of Ti powder. The residual stress mapping has been achieved using neutron diffraction technique and analyzed within a modeling approach. The analysis allowed it to be determined as to what were the major contributions into the overall stress field and to establish the main sources of the residual stress, providing an analytical tool for prediction of the residual stress buildup in more complex shapes.