Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matz, Philipp

  • Google
  • 1
  • 10
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Experimental and Numerical Analysis of the Three-Point Bending Behavior of Hybrid Adhesive-Bonded Aluminum–Wood Plates4citations

Places of action

Chart of shared publication
Frieß, Michael
1 / 1 shared
Gruber, Lukas
1 / 1 shared
Auer, Peter
1 / 11 shared
Bauer, Christoph
1 / 4 shared
Sommitsch, Christof
1 / 71 shared
Domitner, Josef
1 / 41 shared
Painer, Johannes
1 / 1 shared
Krenke, Thomas
1 / 3 shared
Graf, Eva
1 / 3 shared
Kurzböck, Christian
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Frieß, Michael
  • Gruber, Lukas
  • Auer, Peter
  • Bauer, Christoph
  • Sommitsch, Christof
  • Domitner, Josef
  • Painer, Johannes
  • Krenke, Thomas
  • Graf, Eva
  • Kurzböck, Christian
OrganizationsLocationPeople

article

Experimental and Numerical Analysis of the Three-Point Bending Behavior of Hybrid Adhesive-Bonded Aluminum–Wood Plates

  • Frieß, Michael
  • Gruber, Lukas
  • Auer, Peter
  • Bauer, Christoph
  • Sommitsch, Christof
  • Matz, Philipp
  • Domitner, Josef
  • Painer, Johannes
  • Krenke, Thomas
  • Graf, Eva
  • Kurzböck, Christian
Abstract

Hybrid components of wood-based materials offer a high potential for automotive lightweight applications. To investigate the bending behavior of hybrid aluminum-wood plates, commercial 1-mm-thick sheets of EN AW-6016-T4 aluminum alloy were adhesive-bonded with 4.2-mm-thick plates of birch wood. Orientations of the wood fibers parallel (longitudinal) as well as perpendicular (transverse) to the rolling direction of the aluminum alloy sheet and three different moisture contents of the wood plate were considered. The hybrid aluminum-wood plates were subjected to three-point bending at room temperature. Simple wood plates without aluminum alloy sheets were also tested. The bending force-bending angle curves monitored during bending, the bending angles at maximum bending force and the surface strains were evaluated. Moreover, a finite element model of the testing setup was created using the LS-Dyna software. The different moisture contents did not significantly influence the bending angle; however, moisture decreased the maximum bending force. Debonding was identified as critical failure mechanism. The FE model that considered the experimentally determined material properties was able to predict the bending behavior for different moisture conditions.

Topics
  • surface
  • aluminium
  • wood
  • laser sintering