Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mariani, Fabio

  • Google
  • 2
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Ti6Al4V Thin Walls Production using Laser Directed Energy Deposition (L-DED) Process2citations
  • 2021Characterization and Optimization of Process Parameters for Directed Energy Deposition Powder-Fed Laser System11citations

Places of action

Chart of shared publication
Coelho, Reginaldo
2 / 6 shared
Barragan, German
2 / 8 shared
Perilla, Daniel Andres Rojas
1 / 1 shared
Nuñez, Johan Grass
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Coelho, Reginaldo
  • Barragan, German
  • Perilla, Daniel Andres Rojas
  • Nuñez, Johan Grass
OrganizationsLocationPeople

article

Characterization and Optimization of Process Parameters for Directed Energy Deposition Powder-Fed Laser System

  • Mariani, Fabio
  • Perilla, Daniel Andres Rojas
  • Nuñez, Johan Grass
  • Coelho, Reginaldo
  • Barragan, German
Abstract

<p>Laser-directed energy deposition (L-DED) is a type of additive manufacturing (AM) technology that allows the manufacture of complex geometry components in a layer-by-layer way and can be considered an emerging manufacturing technique. The process efficiency and properties of produced parts are closely linked to its parameters, i.e., laser power, deposition speed, material flow rate and, inert gas flows. These operational parameters usually are different depending on the machine and material employed. The best combination of process parameters is fundamental to obtain the best characteristics together with process sustainability for each manufactured component. At the present work, an L-DED head and a powder feeding system are combined in a particular machine to deposit Inconel 625 on a substrate made of AISI 304 stainless steel. A combination of analytical studies, CFD simulations, and experimental tests was carried out, finding a process setting that offers a higher concentration of particles, quality depositions, and optimal cooling rates, reducing gas and material consumption during the process. After some in-situ tests, the best results were employed to fabricate thin wall structures and solid components. The specimens were characterized by laser confocal microscopy, roughness, and Vickers microhardness measurements, finding exciting results with a significant reduction in gas consumption and metal powder usage.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • stainless steel
  • simulation
  • directed energy deposition
  • confocal microscopy