People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tosi, R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
On optimization of surface roughness of selective laser melted stainless steel parts: A statistical study
Abstract
In this work, the effects of re-melting parameters for postprocessing the surface texture of Additively Manufactured parts using a statistical approach are investigated. This paper focuses on improving the final surface texture of stainless steel (316L) parts, built using a Renishaw SLM 125 machine. This machine employs a fiber laser to fuse fine powder on a layer-by-layer basis to generate three-dimensional parts. The samples were produced using varying angles of inclination in order to generate range of surface roughness between 8 and 20 µm. Laser re-melting (LR) as post-processing was performed in order to investigate surface roughness through optimization of parameters. The re-melting process was carried out using a custom-made hybrid laser re-cladding machine, which uses a 200 W fiber laser. Optimized processing parameters were based on statistical analysis within a Design of Experiment framework, from which a model was then constructed. The results indicate that the best obtainable final surface roughness is about 1.4 µm ± 10%. This figure was obtained when laser power of about 180 W was used, to give energy density between 2200 and 2700 J/cm2 for the re-melting process. Overall, the obtained results indicate LR as a post-build process has the capacity to improve surface finishing of SLM components up to 80%, compared with the initial manufactured surface.