People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mahesh, Karimbi Koosappa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2013In situ structural characterization of laser welded NiTi shape memory alloyscitations
- 2013Simultaneous probing of phase transformations in Ni-Ti thin film Shape Memory Alloy by synchrotron radiation-based X-ray diffraction and Electrical Resistivitycitations
- 2012In situ study of thermomechanical cycling of shape memory alloys
- 2012Textural Evolution Evaluated by EBSD and XRD after Thermal Treatment in Ni-Ti Shape Memory Alloy
- 2011Concurrent Effect of Melt-spinning and Severe Plastic Deformation on Shape Memory Alloy Ribbons by Simultaneous XRD and Electrical Resistivity Measurements
- 2011Combined in-situ XRD and Electrical Resistivity Study of the Phase Transformations in Ni-Ti SMA
- 2011Stability in Phase Transformation After Multiple Steps of Marforming in Ti-Rich Ni-Ti Shape Memory Alloycitations
- 2011Simultaneous XRD and Electrical Resistivity Measurements of the phase transitions in Co-Ni-Ga ferromagnetic shape memory alloy system
- 2010Phase Transformation in Ni-Ti Shape Memory and Superelastic Alloys Subjected to High Pressure Torsion
- 2010XRD study of the transformation characteristics of severely plastic deformed Ni-Ti SMAscitations
- 2010Textural Modifications during Recovery in Ti-Rich Ni-Ti Shape Memory Alloy Subjected to Low Level of Cold Work Reduction
- 2010Phase transformation and structural study on the severely plastic deformed Ni-Ti alloyscitations
- 2009In-situ XRD and Electrical Resistivity Study of the Phase transformations in Ni-Ti Shape Memory Alloys (SMA)
- 2008Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulationcitations
- 2008The interfacial diffusion zone in magnetron sputtered Ni-Ti thin films deposited on different Si substrates studied by HR-TEMcitations
- 2008Thermomechanical behavior of Ti-rich NiTi shape memory alloyscitations
- 2007In-situ study of Ni-Ti thin film growth on a TiN intermediate layer by X-ray diffractioncitations
- 2007X-ray diffraction study of the phase transformations in NiTi shape memory alloycitations
- 2006One- and two-step phase transformation in Ti-rich NiTi shape memory alloy
- 2006Kinetics characterization of martensitic transformation on Ti-rich Ni-Ti SMA
- 2006Texture evolution during annealing of Ni-Ti shape memory alloy
- 2006Study of the textural evolution in Ti-rich NiTi using synchrotron radiationcitations
Places of action
Organizations | Location | People |
---|
article
Stability in Phase Transformation After Multiple Steps of Marforming in Ti-Rich Ni-Ti Shape Memory Alloy
Abstract
Nickel-titanium (Ni-Ti) alloys are the most attractive among shape memory alloys (SMA) due to their good functionality properties coupled with high strength and ductility. The transformation temperatures in Ti-rich Ni-Ti SMA can be altered by subjecting them to suitable thermal and/or mechanical treatments to obtain martensitic transformation in one or more steps above 0 A degrees C. The goal of the present work is to investigate the stability of phase transformation characteristics, such as, type of sequence (one, two, and multiple steps) and transformation temperatures in Ti-Rich Ni-Ti SMA (Ni-51 at.%Ti), after being subjected to an initial heat treatment at 500 A degrees C for 30 min in air followed by multiple steps of marforming (cold rolling, 30% thickness reduction) intercalated with heat treatments at 500 A degrees C for 30 min in air and a final heat treatment at four different temperatures (400, 450, 500, and 600 A degrees C) for 30 min in air atmosphere. Differential scanning calorimetry (DSC) and electrical resistivity (ER) were used to identify the phase transformation sequences and the stability of transformation temperatures during initial 10 thermal cycles for each sample with distinct thermo-mechanical treatment.