People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Koehne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2012Effects of Microstructural Evolution on the Thermoelectric Properties of Spark-Plasma-Sintered Ti0.3Zr0.35Hf0.35NiSn Half-Heusler Compoundcitations
- 2011Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloyscitations
- 2010Investigation of the Thermoelectric Properties of LiAlSi and LiAlGecitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the Thermoelectric Properties of LiAlSi and LiAlGe
Abstract
The compounds LiAlSi and LiAlGe were synthesized and their thermoelectric properties and temperature stability were investigated. The samples were synthesized by arc melting of the constituent elements. For the determination of the structure type and the lattice parameter, x-ray powder diffraction was used. Both compounds were of the C1 b structure type. The stability of the compounds was investigated by differential thermal analysis and thermal gravimetry. The Seebeck coefficient and the electrical resistivity were determined in the temperature range from 2 K to 650 K. All compounds showed p-type behavior. The thermal conductivity was measured from 2 K to 400 K. The evaluation of the thermal conductivity yielded values as low as 2.4 W m -1 K -1 at 400 K for LiAlGe. The low values are ascribed to high mass fluctuation scattering and a possible rattling effect of the Li atoms.